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Abstract – With high-resolution radar sensors such 
as HRRR and SAR, ground targets become visible 
more as a rich set of radar signatures corresponding 
to the target geometrical details than as a single 
reflector with an equivalent RCS. This has enabled 
target classification and identification (ID). As a 
“by-product” of the target ID process, the pose 
angles are made available. For ground targets, 
which are constrained to move on the earth surface, 
their velocity vector direction is aligned most of time 
along the body’s longitudinal axis. As a result, the 
pose angles carry kinematic information that can be 
used to aid target tracking particularly during the 
maneuvering periods. In this paper, we investigate 
the potential benefits of pose angular aiding and the 
requirements on pose angular measurements in order 
to realize such benefits. Simulation results are 
presented to illustrate the concept and performance. 
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1. Introduction 
Feature-aided tracking remains to be an area of active 
search, to support which a public-domain database 
called “Feature-Aided Tracking of Stop-move 
Objects (FATSO)” has been generated by the Sensor 
Directorate of the Air Force Research Laboratory 
(AFRL/SN) [1]. Compared to conventional tracking 
with post-detection position observables (i.e., range 
and bearing), feature-aided tracking (FAT) expands 
at least in two aspects: 
• Low-level measurements, which are compared 

with reference templates in a database for match. 
When successful, it provides target type, viewing 
angles (or pose angles), and other information. 

• Extended target state, which will include not only 
the kinematic variables (i.e., position, velocity, and 
possibly acceleration) but also target’s orientation 
relative to its environment (terrain and road).  
For a high range resolution radar (HRRR), the low-

level measurements are in the form of range profiles 
as shown in Figure 1. The range profile is a one-
dimensional measurement of target radar reflectivity 
along the radar to target line of sight (LOS) vector 

where the amplitudes are statistical features. This 
look vector, when expressed in the target body frame 
in terms of the aspect (or articulation) and depression 
angles, is called a “pose” as illustrated in Figure 2. 
For practical reasons, a target is pre-sampled into a 
template library in its range profile at discrete poses. 
A successful template matching therefore identifies 
the target type and at the same time produces the 
pose at which the range profile is viewed. 

Most target tracking and ID systems are 
implemented independently. This has both theoretical 
and practical reasons. One practical limitation in the 
past was the lack of sensor accuracy/resolution and 
powerful computers for reliable implementation in 
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real time. When target tracking and ID are considered 
jointly, we deal with a hybrid space. The target 
kinematic state and its measurements are continuous-
valued whereas the target type is discrete-valued and 
so is the target pose due to quantization. 

In our previous work [2; 3], we have identified 
possible couplings between tracking and ID systems 
via pose, kinematic, and association constraints that 
can be exploited to improve performance.  

In this paper, we continue our early efforts and will 
investigate the potential benefits of pose angular 
aiding. Target pose angles are made as part of the 
target ID process. For ground targets, they are 
constrained to move on the earth surface and more 
importantly their velocity vector direction is aligned 
most of time along the body’s longitudinal axis. As a 
result, the pose angles carry kinematic information 
that can be used to aid target tracking particularly 
during the maneuvering periods. It can be used either 
as a maneuver indicator or as an extra measurement, 
both helping maneuvering target tracking. In 
addition, we will determine the requirements on pose 
angular measurements (accuracy and latency) in 
order to realize such benefits. Simulation results are 
presented to illustrate the concept and performance. 

2. Pose Angular Features 
Target pose is the viewing direction expressed in the 
target body coordinates. It is the same as the LOS 
vector, which will be denoted by l[a] when measured 
in the radar frame and by l[b] when seen in the target 
frame. They are related by: 
l[b] = La

bl[a] (1a) 
La

b 
 = Lr

bLg2
rLi

g(Li
a)T (1b) 

where La
b is the rotation matrix from the airborne 

sensor frame to the target body frame. 
Conceptually, it is constructed from the following 

rotations: (1) Li
a is the attitude of the aircraft sensor 

frame to the common reference frame (roll, pitch and 
yaw angles) provided by the onboard inertial 
navigation system (INS), (2) Li

g is the rotation matrix 
from the common reference frame to the terrain 
surface frame, (3) Lg

r is the rotation matrix from the 
terrain surface to the road segment with an additional 
azimuth angle, and (4) Lr

b is the rotation matrix from 
the road segment to the target vehicle with an 
additional azimuth angle. 

The rotation matrix from the common reference 
frame to the terrain surface frame, Li2g, is related to 
the local terrain surface orientation angles, which are 
functions of the target location. The rotation matrix 
from the terrain surface frame to the target vehicle 

body frame Lg
b = Lr

bLg
r can be approximately given 

by the direction of velocity vector.  
To illustrate, consider two simple cases in Figure 3. 

The first case in Figure 3(a) is a tail chase where the 
target and sensor are in the same vertical plane. 
When the airborne sensor is level, the depression 
angle μ is related to the elevation angle of the radar η 
and the terrain surface slope Θ by: 

μ = η + Θ (2a) 
The second case as shown in Figure 3(b) is on a 

flat earth where the airborne sensor is also level. The 
aspect angle ϕ is then related to the azimuth angle of 
the radar ξ, the road direction ψ, and the angular 
offset of the velocity vector relative to the road β as: 

ϕ = 180o - ξ - ψ - β (2b) 
For the second case, assume that the velocity 

direction is in alignment with the pose aspect angle 
(i.e., without sideslip). Then the pose aspect angle 
can be used as an additional measurement [4]: 

x

y

v
v1tan −=ϕ  (3) 

where vx and vy are the velocity components in the x- 
and y-axis directions, respectively. 
 

Figure 3 – Pose Angles Related to Radar and 
Terrain/Road Conditions 

If we use the extended Kalman filter, this nonlinear 
measurement will be linearized around the predicted 
value of the two velocity components. The prediction 
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where the quantities with an over bar are the 
predicted values.  
This pose-derived measurement can be used to 
complement the range and bearing measurements. 
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3. Simulation Scenario 
We consider a simple scenario in which a target 
maneuvers on an x-y plane. The target is measured 
every T = 10 seconds. At t = 410s, it starts a slow 90 
degrees turn, which is completed in 190 seconds. A 
second, fast, 90 degrees turn starts at t = 610s and is 
completed in 40 seconds. 

The target state vector is chosen as X = [ x x.  y y.  ]T 
with its initial values X(0) = [2000m, 0m/s, 10000m, -
15m/s]T. The slow turn is the result of acceleration 
inputs ax = ay = 0.075m/s2, 410s ≤ t ≤ 610s and the 

fast turn is due to inputs ax = ay = -0.3m/s2, 610s ≤ t 
≤ 650s.  

Without maneuver, the target is modeled 
(separately in x and y coordinates) by: 

X (k + 1) = ⎣⎡ ⎦⎤
1 T
0 1    X(k) + 

⎣
⎢
⎡

⎦
⎥
⎤T 2

2
T

   v(k) (5) 

where v(k) ~ N(0, Q).  The measurement model is: 
Z (k) = [1 0 ] X (k) + w (k)  (6) 

where w(k) ~ N{0, R}. 
The model transition probability matrix is defined 

as:  

Π = 
⎣
⎢
⎡

⎦
⎥
⎤0.8 0.1 0.1

0.1 0.8 0.1
0.1 0.1 0.8

   (7) 

It is easy to see that the slow turn rate is 
0.4478o/sec while the fast turn rate is 2.1951o/sec. For 
each sample interval of 10s, the angular increment is 
4.478o/sample and 21.951o/sample, respectively. In 
the feature-aided tracking, the accuracy of pose 
angular measurements will be made commensurate 
with these numbers. 

4. Pose Angles As Maneuver Indicator 
For the analysis presented in this section, we assume 
that the target orientation (i.e., pose angles) is derived 
from a template matching process using the target’s 
HRRR range profiles or SAR imagery patches with a 
database. Without sideslip angle, the vehicle 
orientation is aligned with the velocity vector. As a 
result, the estimated vehicle orientation in the local 
coordinate can provide an estimate of the direction of 
the target velocity vector. It can be used to help the 
tracker as a maneuver indicator (studied in this 
section) or an extra measurement (in Section 5). 

Conventional tracking algorithms such as the IMM 
estimator [5] make use of positional measurements 
(range and bearing) alone. However, the change in 
velocity is faster than position after a turning 
maneuver for instance because position is integrated 

out of velocity. As a result, the use of change in 
orientation has the potential to reduce transient errors 
thanks to early and better estimation of the correct 
target model [6]. 

To appreciate this, let us compare the ideal angular 
difference between two consecutive pose articulation 
angles (i.e., an estimate of angular rate) and that 
calculated from the IMM velocity estimates. As 
shown in Figure 4, the IMM estimator lags the actual 
pose angular changes. These are places where the 
velocity errors develop in the filter estimates and the 
position errors follow suite. 

Figure 5 shows the angular rates calculated from 
pose angular measurements when it is subject to 
white Gaussian errors with σψ = 0.5o, 1o, and 3o, 
respectively. The corresponding angular rate standard 
deviations are ψσ & = 0.707, 1.414, and 4.243o/sample, 
respectively.  

Figure 4. Latency in Angular Rate Estimation by 
Position-Alone IMM after Turns 

Figure 5. Angular Rate Measurements with Different 
Noise Levels 

It is clear that filtering is needed to smooth out the 
noise and to provide a decision as to if a turn has 
occurred and if so in which direction and at which 
rate. Two estimation techniques are developed below. 
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One is an IMM estimator for the pose articulation 
angle, which estimates the underlying angular rate 
and their model probabilities. The other is a 
Bayesian-Markov technique. Both are described 
below and evaluated with simulations. 

4.1 Bayesian-Markov Estimator of Turning Maneuvers 
By inspecting Figures 4 and 5, it is reasonable to 
believe that a consistent bigger than 3o/sample 
change in angular rates indicates a maneuver turn. A 
Bayesian-Markov estimation algorithm can therefore 
be used to detect jumps (pose angular rate) in noise 
measurements (pose angle). 

In this estimation technique, the abrupt change of 
heading is assumed to take place within a finite set of 
possibilities (mode), denoted by m(t) ∈ M = 
{1,2,…,M} with its indicator vector denoted by φ(t) 
such that φi(t) = 1 if m(t) = i. 

The behavior of m(t) is modeled by a Markov 
chain with the transition probability Q = [qij] defined 
as: 
 qij = P{m(t+1)=j|m(t)=i} = P{φj(t)=1|φi(t)=1} 

 with 1
1

=∑
=

M

j
ijq  (8) 

The angular rate measurements can be modeled as: 
 )](,[)1()](,[)( tmtHtztmtAtz +−=  
 )()](,[ twtmtG+  (9) 

where the matrices A(n×n), H(n×1), and G(n×p) 
depend on the current mode m(t), and w(t) is an 
independent unit-variance white Gaussian process. 
The observation z(t) can be considered as a stochastic 
process with its mean and moment functions 
modulated by the jump mode.  

Denote the measurement history by Zt = {z(s), 
s≤t}. The estimate of the jump mode φ(t) in the mean 
square sense given the current and past pose 
measurements Zt is written as: 

}|)({)|(ˆ tZtEtt φφ =  (10) 

As the conditional expectation, it affords a natural 
interpretation that its ith component is the a posteriori 
probability of φi(t)=1 (the ith state is true) given Zt.  

Then applying the Bayes’ formula, we obtain a 
recursive algorithm to calculate the composite state 
estimate in which  

)1|(ˆ)]'([
)1|(ˆ)]}([{)|(ˆ

−
−

=
tttzL

tttzLdiagtt
φ

φφ  (11a) 

is the measurement updating equation; 

)1|1(ˆ')1|(ˆ −−=− ttQtt φφ  (11b) 

is the one step ahead prediction equation; 
L[z(t)] = [f1(z(t), f2(z(t),…, fM(z(t)] (11c) 

is the set of likelihood functions defined by 
fi(z(t) = N{z(t); Aiz(t-1)+Hi, GiGi’} (11d) 

and 0
ˆ)0|0(ˆ φφ = is the initial condition. 

Other techniques can be used to construct the mode 
filter including the point-process mode filter [7] and 
the confidence belief measures [8]. 

We present the simulation results next. In the 
present case, we have M = 3, H1 = 0o/sample; H2 = 
5o/sample, H3 = -5o/sample; Ai = 0; and Gi = 
1o/sample, for i = 1, 2, 3. In the Bayesian-Markov 
algorithm of Eq. (11), we use the same transition 
probability matrix as the IMM algorithm of Eq. (7). 

Figure 6 shows the model probabilities when the 
angular error standard deviation is 0.5o, from which 
the angular difference is calculated as the 
measurements as in Eq. (9). Compared to position 
measurements alone, the use of pose articulation 
angles can obtain faster and more reliable indication 
of the most likely model of maneuvering than the 

position data alone. 
Figure 6. Model Probabilities from Pose 

Measurements with Low Noise 
When the angular error standard deviation is 

increased to 1o, Figure 7 shows the model 
probabilities. There are some false transition trends 
but overall it provides faster indication of the most 
likely model. 

When the angular error standard deviation is 
further increased to 3o, the model probabilities are not 
as reliable as the two previous cases because this 
level of angular noise is as large as the turn rate itself. 
Although it can indicate the true turns quickly, there 
are many false transition spikes. Clearly, the pose 
angular measurement accuracy plays a key role and 
this analysis imposes the performance requirements 
on the pose angular estimation algorithms. 
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Figure 7. Model Probabilities from Pose 

Measurements with High Noise 
If we work with angular measurements directly 

rather than their time-differences, we can employ the 
IMM algorithm and are expected to see noise 
reduction as presented below. 

4.2 IMM Estimator for Pose Angles 
For a target maintaining a constant heading, its 
orientation (i.e., the velocity vector) relative to the 
local reference frame also remains constant until it 
starts making turns. As a result, the change in 
heading as measured from the pose angles as shown 
in Figure 4 can be used to detect the underlying 
maneuvers. 

A turning maneuver, as seen from the angular 
measurements, appears as a constant drift in one 
direction or the other. However, the drift rate (i.e., the 
angular turning rate) is unknown. In the IMM 
algorithm, this unknown is hypothesized as one of 
possible rate values.  

It suffices to use a first-order model to relate the 
observed pose articulation angle ψk to the unknown 
turning rate ωk by: 

kkkk vT ++=+ ωψψ 1  (12) 

where vk is the process noise assumed to be 
independent zero-mean white Gaussian, and T is the 
sampling interval. 

The measurement equation is given by: 

kkk w+=ψψ(  (13) 

where wk is the measurement noise assumed to be 
independent zero-mean white Gaussian. 

In the first simulation, three models are chosen for 
the unknown angular rate as Ω = [0, 0.2865, –0.2865] 
(o/sec) = [0, 0.005, -0.005] (rad/sec), respectively. 
The angular measurement noise standard deviation is 
σw = 0.5o. The process noise standard deviations are 
σv = [0.0001o, 0.001o and 0.001o] for the three 

models, respectively. Figure 8 shows the model 
probabilities. The IMM filter rapidly and reliably 
captures the two turns. However, although in favor 
of, it is less certain when the vehicle goes straight. 
This is because the three models are very close in 
values. 

Figure 8. Model Probabilities with Closely Spaced 
Models  

In the second simulation, all the parameters remain 
the same except for the angular rates that are chosen 
this time with larger separation as Ω = [0, 0.5, –0.5] 
(o/sec) = [0, 0.0087-0.0087] (rad/sec), respectively. 
Figure 9 shows the model probabilities where the 
IMM filter improves its probability for no maneuver 
model. 

Figure 9. Model Probabilities with Larger Model 

Separations 
Figures 10 and 11 show two cases where the 

angular measurements are subject to large errors σw = 
1o and 3o, respectively. Although the IMM filter is 
less sure about its model when the vehicle goes 
straight, it is still in favor of the no maneuver model 
consistently. It is remarkable that with such large 
measurement errors, the filter can correctly determine 
the maneuver models. This is advantageous as 
compared to Figure 7 in the large noise case. 
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Figure 10 - Model Probabilities with Larger 
Measurement Errors (1o) 

Figure 11 - Model Probabilities with Larger 
Measurement Errors (3o) 

5. Pose Angles As Extra Measurements 
In this section, we study through simulation the use 
of the pose angular measurements as given in Eq. (4) 
to assist the IMM estimator. The position and pose 
angular measurement error standard deviations are 
50m and 1o, respectively. The acceleration models 
are Afilter = [0, 0.075, –0.3] (m/s2) with the process 
noise variances being  Qfilter = [0.012, 0.12, 0.12]. 

Figure 12 shows the measured and estimated 
trajectory in comparison to the actual one. Figures 13 
and 14 show the sample history of the measured and 
estimated (IMM combined) position errors in the x- 
and y-direction, respectively. 

Figures 15 and 16 show the sample history of the 
actual, the individual model-estimated, and the 
combined velocity in the x- and y-direction, 
respectively. Figure 17 shows the model probabilities 
by the IMM filter when the pose angular 
measurement is used, significant improvement over 
the cases without pose measurement. 

Position and velocity estimation error statistics data 

are shown in Table 1 for the cases where the angular 

Figure 12. Target Trajectory 

Figure 13. Position Errors (X) 
Figure 14. Position Errors (Y) 

measurement error standard deviation is 1o and 2o 
while the position measurement error standard 
deviation is 50m. 

Table 1. Position and Velocity Estimation Errors Statistics 
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Pose STD RMS-X RMS-Y RMS-VX RMS-VY 

Without σx,y = 50m 23.2785 31.1022 4.9666 5.3763 

σψ = 1o 7.0033 22.2635 0.1405 0.5309  
With 

σψ = 2o 9.1620 22.7878 0.2112 0.6065 
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Figure 15. Velocity Errors (Vx) 

Figure 16. Velocity Errors (Vy) 

 Figure 17. Model Probabilities with Pose Angles 

Similar results are shown in Table 2 for the cases 
where the angular measurement error standard 
deviation is of 1o and 2o while the position 
measurement error standard deviation is 100m. 

The simulation results in Tables 1 and 2 show that 
when position and pose angular measurement errors 
are increased, the target state estimates degrade 
correspondingly, as one would expect. However, the 
solution is much better with pose measurements than 

without, indicating the benefits of feature aiding in 
maneuvering target tracking. 

Table 2. Position and Velocity Estimation Errors Statistics 

 
6. Model Sensitivity of IMM Estimator 
It is well known that the model probability estimates 
of an IMM estimator are sensitive to such model 
parameters as the process and measurement noise 
variances. In this section, we study the sensitivity of 
the IMM algorithm in terms of its model probabilities 
with respect to the model acceleration values. 

Case 1: Afilter = Atruth/2. In this simulation, all the 
parameters are kept exactly the same as in the 
previous setting except for the acceleration values 
used in Model 1 and Model 2, which are halved as 
compare to the true values, that is, Afilter = Atruth/2. 

Figure 18 shows the model probabilities. 
Compared to Figure 6, the filter is less sure during 
the quiescent without maneuver since the three 
models are made closer than the actual data. But it is 
much better than without pose angular measurements 
were used. 

Figure 18. Model Probabilities with Halved 

Acceleration 
Case 2: Afilter = 2×Atruth. In this simulation, all the 

parameters are kept exactly the same except for the 
acceleration values used in Model 1 and Model 2, 
which are doubled as compared to the true values, 
that is, Afilter = 2×Atruth. 

Figure 19 shows the model probabilities when the 
accelerations used in Model 1 and Model 2 are 
double of the true values. It shows better model 
separation during the non-maneuver period than 
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Figure 6 since the maneuvering models are made far 
away from the non-maneuvering model. 

However, it becomes more volatile during 
maneuvers and becomes less sure about the maneuver 
models because the model values are larger than the 
actual ones. 

Figure 19. Model Probabilities with Doubled 
Acceleration 

The RMS values are summarized in Table 3, 
showing corresponding degradation due to filter 
parameter mismatches. 

Table 3. Position and Velocity Estimation Errors Statistics 

 
7. Summary 
In this paper, we studied the target pose angular 
features and their use to improve target tracking. It 
was based on two physical facts: (1) the longitudinal 
axis (determined from the pose angles) of a ground 
target aligns most of the time with the velocity vector 
and (2) target body rotation is faster than (i.e., 
preceding to) lateral displacement after a turn 
maneuver, thus being more easily detectable. We 
investigated the use of pose angles as a turn 
maneuver indicator or as an extra measurement to a 
tracking filter. In the former case, we developed a 
Bayesian-Markov estimator for turn maneuvers and 
an IMM estimator for pose angles. In the latter case, 
we showed significant improvement in position RMS 
errors with pose angular measurements. We also 
investigated the effects of pose angular measurement 
accuracy on estimation performance as well as the 
sensitivity of the IMM estimator with respect to 
model parameters. 

Since long, target features have been used for 
classification and ID. Recently it has also been used 
to facilitate and improve report to track association. 
This paper has shown that target features can also be 
used directly in kinematic state estimation, therefore 
serving as a viable coupling between the target 
identification and tracking systems. 
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