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ABSTRACT 
 
Today’s Warfighter requires new capabilities that reduce the kill chain timeline.  The capability to maintain track on 
mobile Time Sensitive Targets (TSTs) throughout the entire targeting cycle is a step towards that goal.   This capability 
provides the strike assets with high confident, actionable, targeting information, which reduces the time it takes to 
reacquire the target prior to prosecution.  The DARPA Dynamic Tactical Targeting (DTT) program is developing new 
sensor resource management and data fusion technologies for continuous coordination of tactical sensor resources to 
detect and identify mobile ground targets and maintain track on these known high-value targets.  An essential concept of 
the DTT approach is the need for the fusion system and the resource manager to operate as part of a closed loop process 
that produces optimum collection plans against the designated high value TSTs.  In this paper, we describe this closed 
loop approach used within the DTT system.  The paper also describes other aspects of the DTT program, including 
overall program status, the DTT distributed architecture, details of the fusion and dynamic sensor management 
components, and concludes with current evaluation results. 
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1. INTRODUCTION 
 
DARPA’s Dynamic Tactical Targeting (DTT) program is developing a capability for continuous coordination of 
tactically responsive organic sensors to detect and identify mobile ground targets and maintain track on known high-
value targets.  Central to the DTT approach is the closed-loop interaction between the Fusion and Sensor Management 
(SM) systems.  As part of this interaction, Fusion generates an information needs (IN) requests to the SM system to 
provide information which is critical to maintain track on a target of interest.  This capability allows a Battlefield 
Commander to observe fusion requests and control sensor assets with proactive tasking, collection, and the extraction of 
critical data.  The DTT program was motivated by limitations of the current targeting process to find, identify, and 
prosecute time critical targets (TCTs). Current stovepiped collection management, exploitation, dissemination, and 
targeting systems limit responsiveness which is particularly critical for TCT prosecution.  Missed opportunities are 
created by latencies introduced during each step of the process.  Thus the challenge for DTT is to break the stovepipes 
and create an integrated, closed-loop, system providing “…warfighters with a manageable process and effective tools to 
enable sensor resource management and sensor data exploitation for effective prosecution of time critical targets” [1] 
 
The DTT program commenced in March 2002, with a series of design meetings and Integrated Product Team activities.  
These efforts resulted in a development plan, which includes three incremental builds of the system.  Each build entails 
development, integration and testing phases.  The third build of the system will focus on developing a real-time system, 
integration with a transition partner and field exercises and demonstrations.  Currently, the build one version of the DTT 
system is being evaluated.  Build two of the system will be integrated and tested in November and December of 2005. 
 
DARPA has partnered with multiple service research and development organization to assist in the development, testing 
and transition of the DTT capability.  The Air Force Research Laboratory (AFRL), the Navy SPAWAR Systems Center 
San Diego (SSCSD), and the Intelligence and Information Warfare Directorate (I2WD) of the US Army 



Communication Electronic Command Research and Development Center (CERDEC) all are working with DARPA.   
The DTT System and ISR Testbed currently reside within the AFRL Sensors Directorate’s Advanced Recognition 
Capability (ARC) laboratory.  The integration and the testing of the DTT System takes place within the ARC and is 
conducted by AFRL in-house engineers and scientist.  Current plans are to field test the system with the CERDEC. 
 
The DTT Architecture is depicted in Figure 1.  The interface to the DTT user is captured in the ISR Commanders’ 
Interface (ISRCI) Component.  Commander’s guidance flows into the system through ISRCI.  System input (e.g. sensor 
reports) enters through the Registration component.  The purpose of the Registration component is to reduce sensor 
report errors by estimating systematic sensor biases and discovering new fiducials across all the intelligence domains.  
The Fusion component incorporates all available data (all-source) to discover new targets and to form estimates of target 
locations and identities.  The Prediction component predicts target motion based on the fused track estimates and 
mobility models in order to anticipate future gaps in coverage where tracks might be lost.  Dynamic Sensor 
Management (DSM) generates and maintains synchronized collection plans for all organic sensor assets in response to 
evolving information needs, focusing coverage as needed to maintain track on high-valued targets.  The DTT ISR 
Testbed uses Sensor/Platform capability models to emulate the external ISR environment and generate the synthetic 
input needed to test the system.  The Testbed and the DTT system are tightly integrated to allow Monte Carlo closed 
loop testing.   The goal is to take a robust DTT system to military experiments and exercises to demonstrate operational 
utility to the Warfighter.   
 

 

Figure 1  The DTT System and Related Components 

 
The remainder document is structured as follows.  Section two looks at the DTT architecture.  Sections three and four, 
focus on the Fusion and DSM components and the closed loop interaction between the two.  Section 5 covers evaluation 
and presents some recent results. 
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2. ARCHITECTURE 
 

2.1. Overview 
The DTT system, composed of five components (Registration, Fusion, Prediction, Dynamic Sensor Management and 
the ISR Commander’s Interface), has been developed to run in a distributed environment with both C++ and Java 
applications.  As many of these component’s early builds were not focused on efficiency or real-time performance, this 
distributed environment allows the use of multiple machines to improve overall run time.  In addition, this approach 
allows legacy functionality in either C++ or Java to be utilized without bias.  As with any distributed architecture, it is 
critical to have an effective methodology for building object models and for allowing object models to evolve as 
requirements change.  With both C++ and Java components, supporting the multiple implementations of these object 
models becomes a particular challenge.  For these and other reasons, the DTT system adopted the eXtensible Distributed 
Architecture developed under the Adaptive Sensor Fusion program [2].   

2.2. eXtensible Distributed Architecture 
The eXtensible Distributed Architecture (XDA) provides a framework to: 
 

• Allow distributed components to communicate at the object level. 
• Allow direct communication between Java and C++ components. 
• Automatically develop software implementations of object models. 
• Allow inheritance of object attributes to extend object models. 

 
The overall strategy is to de-couple the high-level description of the operational domain of interest (ontology) from the 
low-level data transport (physical schema). This ontology approach allows users to generate high-level descriptions of 
the entities of interest in the problem domain.  Once an entity has an ontology-based definition, it can be converted to a 
Generic Transport Object (GTO) and instances of this entity can be transported across platforms as byte-streams (see 
Figure 2). 
  

to_gto()
GTO Byte Sequence

write()

Inter-process Communication

Byte Sequence
GTOread()

Ontology manager

Application
Class Instance

(data)

construct()

Application
Class Instance

(data)

XDA component 1

XDA component 2

GTO = Generic Transport Object

 
Figure 2.  XDA provides a mechanism that allows distributed components to communicate at the object level. 

The ontology approach allows the efficient implementation of a publish and subscribe (pub/sub) paradigm of object 
level information across a robust communication layer.  For the DTT program, XDA utilizes a Common Object Request 



Broker Architecture (CORBA) as the transport mechanism between components.  Because the GTOs are byte sequences 
that are converted back into object level information, C++ and Java components can directly communicate if each 
understands how to transform the byte sequence (defined by the physical schema). 
 
Given the importance of a consistent implementation of the physical schema, a driving concern for the DTT program 
was the ability to translate the Interface Control Document (ICD) into a physical-schema for converting byte sequences 
into object level information.  For this reason, the DTT program developed an approach that allows the automatic 
generation of code from an ICD.  The automated ICD is accomplished in a two step procedure. First, the ICD (defined 
in a Microsoft Word document) is compiled to an ontology definition.  The second step utilizes the XDA ontology 
compiler to generate both C++ and Java code.   
 

 
Figure 3.  Automatic generation of both ontologies and code improves both development time and robustness 

To further reduce complexity, interface ontologies that share many attributes are grouped together for ease of 
exploitation.  For instance, an unregistered sensor report, a registered sensor report, and a track estimate all have 
attributes of: time, source, geo-location, and accuracy.  While these examples may look very different to the 
Registration and Fusion components, they look equivalent to the ISR Commander’s Interface.  For this reason, the DTT 
system uses a single base ontology (Information Frame) that contains all of the common information with inherited 
specific ontologies that add additional attributes particular to details of the domain.  This allows the ISR Commander’s 
Interface to access Information Frames without concern for the details embedded for Registration’s or Fusion’s benefit.   
 

3. FUSION COMPONENT 
 

3.1. Overview 
The fusion component within DTT performs the following tasks: target state estimation and sensor task generation.  
DTT contains two algorithms within the fusion component to perform these tasks.  The All-Source Track and 
Identification Fuser (ATIF) provides the target state estimation while the Fusion Information Needs Determination 
(FIND) algorithm provide the tasks that the DSM can use to focus sensors on high priority targets.  To accomplish the 
first task, ATIF combines data from multiple sensors to detect and identify mobile ground targets and maintain track on 
known high-value targets.  By processing complementary data sources, ATIF produces a self-consistent, compact 
representation of the battle-space with low kinematic and target classification errors and high track continuity through 
move-stop-move target motion cycles [3]. Indeed, the data feeds of interest have complementary characteristics: 
SIGINT systems provide early indications of targets of interest over large fields of view, GMTI systems track moving 
targets, SAR and UGS trackers are effective at determining target identity and can potentially identify both stationary 
and moving targets while EO/ IR data can provide crucial identification confirmation if the sensor is properly tasked. 
Table 1 summarizes the primary properties of a set of commonly used intelligence sources indicating how they 
complement each other.  To accomplish the second task, the FIND algorithm constructs a model of the expected value 
of future sensor information as a function of time, space, kinematic accuracy, classification accuracy, and geometry.  
These models, expressed in the form of Information Needs (INs), allow the DSM to consider multiple sensor-to-task 
combinations in order to maximize the expected value that the DTT system can provide. 
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Table 1.  While no single sensor provides full information, combinations of sensor feeds allows ATIF to provide 
improved coverage of the battle space. 

Sensor Feed Geolocation Quality ID Quality Field of View  Target Motion 

ELINT Poor – Medium Good Emitter Wide Typically Stopped 
COMINT Poor – Medium Medium Wide Both 

MTI Good Poor Medium Moving 

SAR Good Medium Medium Stopped 

IR/EO Good Good Narrow Both 

Acoustic Medium Medium Narrow Both 

3.2. ATIF Overview 
ATIF receives as input the tracks and/or detection-level data from an arbitrary number of sources.  Currently, the sensor 
types handled include GMTI, SAR, EO/IR, SIGINT, acoustic, and seismic sensors (UGS).  The algorithm fuses this 
multi-source data into a set of all-source tracks that have improved continuity, reduced errors in kinematic state 
estimates, and improved identity (target type) information.  Key features of ATIF’s approach include:   
 

• A Multiple Hypothesis Tracking (MHT) approach that considers multiple association possibilities to defer data 
association decisions to allow time correlated data to distinguish between likely and unlikely associations. 

• A hierarchical approach to data fusion allows ATIF to incorporate input tracks optimally when source-reports 
are available and near-optimally when only state estimates are available. 

• Two-stage approach to incorporation of out of sequence measurements (OOSMs) that allows OOSMs to be 
efficiently incorporated as in-sequence data. 

• Adaptive algorithms to focus computational resources on high priority targets. 
 
Each source provides data sequentially to ATIF in the form of an Information Frame.  While the details of the different 
sources differ, all Information Frames contain a frame ID, originator ID, sensor parameters (e.g., sensor location, region 
of regard), a collection time and a set of New Information.  The use of an Object Oriented middleware such as XDA 
allowed multiple forms of New Information to be provided within a single, consistent fusion ontology.  For the first 
build of the DTT system, valid forms of New Information include: raw reports, associated tracks with raw reports, and 
associated tracks without raw reports.  In each case, the New Information included, at a minimum, a kinematic estimate 
(e.g., position estimate, range-bearing-range-rate, etc.) and, optionally, classification estimates (e.g., target type 
declaration and track status parameters).  This general approach to input data allows ATIF to easily accommodate new 
sensor or tracker inputs as they become available. 
 

3.3. FIND Overview 
While the use of multiple platform and sensor assets improves ATIF’s coverage of the battle space, it makes closing the 
sensor-fusion loop more challenging.  Adding to the complexity of this multi-asset synchronization is the fact that the 
DSM is being sent tasks from multiple sources (e.g., FIND tasks, Prediction tasks, Search tasks).  For this reason, fusion 
must have an internal state-space estimator that can assign values to potential future information (derived from sensor 
tasks) that is commensurate with the expected performance improvement and is expressed in terms of meeting a set of 
specified commander’s needs.  As multiple sensors may be capable of satisfying a given task (i.e., SAR could confirm 
that a target has left a staging area, MTI could confirm that a target is moving away from a staging area, EO could 
confirm that the particular target is moving away from a staging area), FIND’s tasks must be sensor independent, 
instead focusing on the information needs.  This has the added value of centralizing the sensor modeling within the 
DSM component. 
 



Our approach to formulating the FIND problem makes use of a stochastic dynamic programming (SDP) framework to 
maximize the time discounted reward J specified by 
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Here, the reward (R) is a function how well each of the track hypotheses (Hi(t)) meets the commander’s goal for 
tracking accuracy and classification confidence.  The value of meeting the commander’s goal is discounted by a factor 
αt to account for the preference for meeting the goals as quickly as possible.  Although the goal of the FIND algorithm 
is explicitly stated only in terms of improving kinematic and classification accuracy the resulting policy produces three 
classes of tasks: 

• Track maintenance:  Sensors will be tasked to regularly revisit high priority target tracks to provide the 
kinematic information needed to maintain high quality estimates on these targets. 

• Ambiguity resolution:  Sensors will be tasked to provide classification information on high-value targets after 
periods of ambiguous interaction with confuser traffic. 

• Finding new targets of interest:  Low level background tasks will be generated to provide classification 
information on tracks with unknown classification to search for new high-value targets. 

 
Our approach to solving the FIND problem involves a two step valuation.  As the discounted reward most heavily 
weights near-term success, an exact one step solution for the expected reward is calculated.  If only this term contributed 
to the valuation function, the resulting policy would be myopic - focusing only on short term rewards.  For this reason, a 
second term is added to estimate the expected discounted reward associated with ATIF being closer to meeting the 
goals.  In this case, we use the following heuristic approximation to the Bellman function based on the solution of the 
simpler but related Multi-Arm Bandit problem [4]; 
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where 
i

y is the target type probability distribution, ρ  is a diagonal matrix of priorities, RΣ  is the reward for meeting 

the specified tracking goals, 2
iσ is the largest eigenvalue of the positional covariance matrix, GoalΣ  is the specified 

tracking accuracy, and Γ is a measure of the commander’s time criticality.  FIND’s total valuation function is then 
given by combining the exact calculation of the one-step look ahead with the long-time approximation of the Bellman 
value. 
 
Using this approach, FIND assigns values to tasks as a function of sensor parameters including: kinematic accuracy, 
classification precision, latency on task fulfillment, and geometry.  This valuation model for different specific sensor 
tasks is captured in the Information Needs (INs) ontology (see below).  While it might be possible to dynamically 
develop analytic models, FIND uses a numerical sampling approach to communicating this value function over the set 
of possible parameter values. 
 

4. DYNAMIC SENSOR MANAGEMENT (DSM) COMPONENT 
 

4.1. Overview 
The Dynamic Sensor Manager (DSM) component provides a capability for automated construction of synchronized 
multiplatform / multisensor plans (platform routes and sensor schedules) in response to information needs generated by 
the other DTT system components (Fusion, Prediction, Registration, and the Commander’s Interface).  The DSM 
architecture has been designed to provide scaleable responsiveness within the DTT feedback architecture.  DSM is the 
execution control element of the DTT closed-loop control system, in that it responds to retasking information requests 



and develops revised sensor collection plans.  Since DSM must be responsive to the full dynamic range of tasking 
frequencies anticipated for the system, precautions have been taken in developing a flexible and scaleable architecture 
and algorithms for replan management as an intrinsic DSM capability.    

4.2. Information Needs 
DSM is driven by Information Needs generated by the other DTT components.  An Information Need (IN) is a 
prioritized, sensor-independent tasking request characterized by spatial/temporal satisfaction criteria (i.e., quality 
requirements and other context dependent collection constraints).  Depending upon the source, the level of abstraction 
(or specificity) of an IN can vary widely.  For example, a command level IN might specify a high-level information 
requirement in an imprecise manner such as “Find, identify, and track all SCUDs in area of inertest (AOI) 1 that start 
moving over the next 10 hours.”  On the other hand, the Fusion component might request an IMINT collection on a 
specific target under track within the next five minutes in order to resolve critical tracking ambiguity.  The level of 
specificity for a Fusion generated IN might require that collected image quality ensure a specified probability of correct 
classification for the target under track.   
 
There are a few features common to all INs.  For example, each IN will specify a collection target.  The collection target 
defines the location, in ground coordinates, where the information is to be collected, which may be a specific spot, a line 
of communication (LOC), an area, or a predicted track (moving target).  Each IN specifies a time window during which 
the collected information is of value to the requestor, together with a value (ordinal scale of importance) or priority 
(discrete ranking of IN categories) for the satisfying the information need.  As a specialization, an IN may specify a 
value as a function of the collection quality or some geospatial or temporal attribute of the collection. 
 
One of the most critical DTT interactions is between the DSM and the Fusion component.  In order to support the 
mission of tracking high valued targets, an interface has been developed in which Fusion provides continuous target 
track prediction updates to DSM, in addition to future collection valuation tables.  This interaction provides a 
continuous collection plan management and plan repair capability focused on maintaining track on selected, high value 
targets.  A Fusion information need may require either kinematic or target classification information.  In either case, the 
IN will be associated with a short-term moving target prediction (less than five minutes) and will have value represented 
as a function of collection quality.  Table 2 is a sample value table provided as part of a Fusion kinematic need1.  A 
Fusion generated IN represents a request to provide information which is critical to maintain track on a target of interest.   
 

 Revisit Period (seconds) 
Quality (TLE) 5 10 15 20 
5 Meter Accuracy 1769 1651 1483 1265 

25 Meter Accuracy 1692 1397 628 385 

125 Meter Accuracy 1185 272 124 79 

Table 2.  Fusion will provide a table of relative values of information based on the quality of the collection and 
the achieved revisit rate. 

4.3. DSM Top-Level Design 
The top level design of DSM includes the following two main components: 
 

• Replan Manager - Controls the dynamic execution of DSM, enabling timely asynchronous planning.  The 
decisions within this component include both when (based on plan and asset state and incoming task queue) 
and how (which tasks, whether or not to change routes, and for what plan horizon) to replan.  In addition, the 

                                                            
1 In the next build of the DTT system, this interface will be generalized to allow value to be a function of both TLE and 
classification confidence within a single generic information need. 



Replan Manager is responsible for maintaining the clock, making sure plans are delivered on time, health status 
messages, and the asset state (receiving the state from PASTE and extrapolating to the plan start time). 

• Plan Generator - Responsible for actually computing optimal platform routes and sensor schedules based on 
guidance from the Replan Manager.  The algorithms within the Plan Generator must support wide area 
surveillance balanced with focused track hold planning. 
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Figure 4: DSM High-Level Architecture.  

4.4. Plan Generator Overview 
In [5], the Multi-Asset Synchronizer (MAS) developed under the DARPA AIM program was presented.  In that paper, a 
framework for ISR planning was introduced that is based on a hierarchical decomposition of the planning problem.  In 
the first phase, platform routes are generated via approximate dynamic programming (ADP).  In the second phase, 
detailed sensor scheduling is performed on the fixed routes generated in the first phase. The DSM Plan Generation 
component extends the MAS route generation capability to provide continuous, responsive plan generation for tactical 
airborne assets.  DSM plan generation algorithms provide a scaleable capability to address a richer set of information 
needs and adapt to a rolling planning horizon.  The DSM plan generation algorithm has been developed to enable 
interrupt and recovery operation to support real-time dynamic replanning by integrating the detailed sensor scheduling 
phase into the route generation phase. 
 
The Network-Flow Problem (NFP)-based value-to-go approximation used in MAS has been shown to be effective for 
large-scale ISR planning problems covering long planning horizons over a large geographical area in which many assets 
are being used to collect thousands of tasks.  The problem is significantly different for DSM, though.  The DTT problem 
is focused on a relatively small area of interest, concerned with look-ahead horizons no longer than 60 minutes, and 
controlling a relatively small number of airborne platforms against a few time-sensitive targets.  This suggests that a 
value-to-go approximation that is less global in outlook than the MAS NFP, but higher fidelity locally (in time and 
space) might be more appropriate for DSM.  Within DSM, a greedy roll-out algorithm is being employed to accomplish 
this goal (see [6] for details). 
 
The focus for DSM-controlled sensors in the DTT program is EO/IR and Radar.  While other sensors (SIGINT and 
UGS) play in the DTT testbed, they are not directly controlled by DSM.  In Table 3 we summarize the collection quality 
metrics of interest to the Plan Generator component of DSM.  In order to support these requirements, it was necessary to 
construct models for each sensor mode that relate collection geometry and target types of interest to the quality 
measures. 
 



Quality Measure Description

Probability of Detection Probability of detecting targets of interest

Resolution For imagery (SAR, EO/IR), the ground sampled distance of the image

Probability of correct classification Probability of correctly classifying targets of interest 

Target location error Requirement on the length of the semi-major axis of the EEP90 ellipsoid 

Table 3: DSM Collection Quality Measures. 

 

5.  PREDICTION 
 
Target tracking typically includes filtering collected measurements, estimating the current target location, and predicting 
the future target path.  The tracker prediction time horizon is a few time steps ahead so as to assist in the placement of 
the platform sensors.  Since the DTT system is controlling many assets and tracking numerous targets, a new effort was 
included to determine if a long-term prediction of target paths could be ascertained to help DSM with platform sensor 
placement.    
 
The main reason why the prediction component was added includes the fact that if an sensor asset was tasked to look 
away from a tracked target, it might not return for many time steps and thus the target track estimate covariance would 
have exceeded the sensor field of view.  When such a large covariance exists, the track maintenance problem defaults to 
a search for a “new” target.  A long-term prediction was deemed necessary to reduce the search space of a tracker for re-
acquiring the target.  Thus, the problem is not a true new target search, but one of “re-acquiring” target search.  
 
The initial attributes of the prediction component include using road networks, target paths, and context information to 
reduce the search space to the most likely target locations. Road networks and terrain information provide lines-of-travel 
information which affects the velocity of the target prediction. Target paths include the kinematics and the expected  use 
of the vehicle (i.e. personnel carrier moving to the front line).  A third component is context information which includes 
target groups traveling together, zones of engagement, and mission priorities. Together, the three attributes of prediction 
effectively reduce the possible target locations for extended time horizons to assist the sensor manager in directing 
sensors for re-acquiring tracks.     

6. EVALUATION 
 
To evaluate the DTT system, we address various performance metrics over extended operating conditions (EOCs). The 
performance metrics that satisfy DTT objectives are 1) geolocation accuracy, 2) track life, and 3) commander needs 
satisfaction. Since geolocation accuracy is dependent on sensor model fidelity, a functional analysis of improved target 
precision based on registered sensor data was completed. Commander needs satisfaction is based on the user, the 
scenario context, and a INs decomposition, all of which are being defined. Thus, for the current DTT assessment, track 
life was determined to be the critical metric of evaluation. Track life is measured for only moving targets since 
stationary targets would have an infinite track life. The moving target track length (distance) was processed over various 
maneuvering targets (i.e. different speeds) to get an estimate of a normalized track life. 
 
The extended operating conditions include 1) number of targets, 2) nominated area of interest (NAI), and 3) sensor 
models. The NAI and high value target number was set for each evaluation run. The simulation models incorporate 
environment conditions, sensor exploitation capabilities, and target behaviors.  Since the DTT evaluation goal was to 
assess a real-world performance capability, the most optimistic sensor assumptions were not used, but rather expected 
sensor operating performance capabilities given the associated environment details. The DTT tracker (Fusion 
Component) conducts track-to-track association, which requires a measurement-to-track single INT tracker input that 
was modeled as a simple parametric tracker.  To determine the DTT performance over the EOCs, a Design of 
Experiments (DOE) was formulated using different scenarios   



5.1. Scenarios 
To effectively evaluate system performance, three types of parameters are assessed: (1) constants (e.g. NAI); (2) Monte 
Carlo variables (e.g. sensor variation), and (3) factors that change (e.g. number of targets) [7, 8]. Table 4 shows the 
DOE analysis for the target, sensor, and environment EOCs. Constant parameters were determined from either un-
modelable effects, issues that did not affect the outcome, or real-world operating conditions. Constant target behavior 
includes emissions and on-road travel while variable target behavior includes move-stop-move cycles, paths, and speed. 
The sensors and platforms are a result of the mission scenario. The sensor variables included exploitation accuracy and 
sensor factors including an On/Off bias selection. The largest category of scenario OCs is from the environment which 
includes weather, NAI, facilities of target initiation/termination, terrain/road conditions, and ‘no-fly zones’.  For each 
scenario, the NAI was fixed and available terrain and weather data provided.     
 
OC Category Parameter Flat Terrain Mountainous 
Targets Targets    6, 12, 25   1, 2, 5 
  Moving Confusers (Dens. / AOI) Low(10), 50 , High (1000) Low (0), Med (10), High (25) 

  Routes-Stop-Move Variable Variable 
Sensors Initial Start Points Variable Variable 
  Bias On/Off On/Off 
Environment ‘No Fly’ Zones Variable Area Locations Variable Area Locations 

Table 4: DOE of Test Scenarios  

 

Utilizing the static environmental conditions, different target densities and sensor models were selected to test a variety 
of scenarios and evaluate the DTT system performance.  Figure 5 represents the design space of different scenarios 
available for a given MIDB (Mission Data Base), NAI, and ATO (air task order of mission objectives).      
 

 
Figure 5: Scenario Parameters.  



 
After the selected scenario conditions for each run were determined, a simulator was used to instantiate the truth 
information, such as actual target behaviors and sensors measurements. The simulator used the mean values and 
variance bounds associated with selected factors to create a half-day scenario which afforded a longitudinal performance 
analysis based on ergodic assumptions.    

5.2. Metrics 
The key metric was track life.  Track life is a function of many parameters such as prioritized target number, NAI, 
target behavior, and number of confuser targets. Given that simulation time was discounted, we assessed the track-life 
metric over timeliness (responsiveness), accuracy (geolocation), and confidence (target identification). Timeliness and 
confidence were combined into a single track life metric output as it was assumed that if the DTT system could maintain 
track over long time interval, it must be labeled correctly (i.e. confidently identified) and tracked (i.e. DSM allocates 
sensor positions to afford timely updates).  The trick to the analysis was designing the track-to-truth associator. For 
discussion brevity, we basically selected a tight validation region that forced an accurate position target requirement and 
assessed whether the DTT track outputs fell within the validation region.  Since the system was evaluated over a number 
of DOE cases, we chose to normalize the results based on the number of scenarios run (i.e. an aggregated set of runs 
would also aggregate the number of targets and metrics).  The track length metric would be determined for all the 
tracks, including the confuser targets.  Thus, we chose as the key metric  
 

 Track Length  = 
 Σ object track length

  Σ objects                 where  Track Life (Hr)  = 
object track length (Km)

  velocity (km/hr)  

 
Choosing the normalized length (over targets and distance) gives a realistic analysis of the overall DTT performance for 
various conditions. Note that the evaluation of the specific functions of DSM, tracking, and registration were not 
conducted as that was deemed as internal processes of the algorithms themselves.   

5.3. Results 
The preliminary results, shown in Figure 6, demonstrate that the DTT system was able to correctly track the targets of 
interest over many runs and operating conditions. 
 

 
Figure 6: Scenario Parameters. 

 
Three observations are noted.  The first is that the correctly labeled tracks are a subset of the entire tracked set. As the 
DTT system initiates tracks, a confirmatory ID is not available until enough evidence is accumulated to positively ID 
the target. Thus, we would not expect all tracks to be labeled at all times (tracked to labeled difference). Secondly, since 



targets have the ability to cross, there are cases in which the positive track label is assigned to another target for a short 
length of time. During the interval of miss-association, the labeled short track length is attributed to another target. 
However, after an incorrect label is assigned, the DTT system realizes the conflict and initiates new track-ID pair and 
correctly reassociates the correct ID to the target (labeled to correctly labeled). The final observation is that the extended 
track life is a result of the simultaneous track and label information. Short tracks that are not targets of interest receive 
few requests for position updates and thus are dropped. The targets of interest are repeatedly measured and thus have an 
extended track life (which is demonstrated as the merging of all three cases to the longest track segment). Future 
analysis will include discounting the short confuser tracks in the normalized track life, determining a minimum time 
threshold for considering a target tracked (i.e. 5 minutes); and a focus on only the highest priority targets.  The DTT 
goal of “extending” track life is notional plotted as reference to the baseline (top right) to show that if the high-priority 
targets are selected, DSM would be able to allocate sensors on target producing longer tracks, while Fusion would be 
able to consistently (relative normalization of number of tracks) exclude short track segments.       
 

7. CONCLUSIONS 
 
To reduce the kill chain timeline, DTT has focused on closing the loop between a Fusion-based tracker and a Dynamic 
Sensor Manager. The key developments of the closed-loop coordination include the automated requesting, selection, 
and satisfaction of Information Needs.  Additional factors that drive the successful closed-loop coordination for 
extending track life include sensor registration, long-time horizon prediction, and an ISR commander’s interface.  
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