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Abstract:  The paper investigates situational learning, 
which utilizes mathematics of probability and evidential 
theory, to determine the perceivable importance of 
environmental cues as they contribute to situational 
awareness.  The situation-awareness agent’s goal is 
consistent with that of an aircraft pilot; namely, to land a 
plane under a variety of weather and runway conditions.  
Landing requires hypothesis selection which can be 
formulated as a situational-learning (SL) problem in 
which sensed states are represented as current situational 
beliefs.  The objective of SL is to learn how to select the 
optimal set of mutually non-exclusive hypothesis in order 
to maximize the identification of the situation. 
 
Three methodologies for the combination of sensor 
measurements for situational learning are designed and 
analyzed for a system equipped with a position measuring 
device and identification sensors. Using a learning 
algorithm for searching, the a priori identification 
probabilities of recognition are known.[1] The methods 
are 1) recursive Bayesian where the probability of the 
current state is based on the a priori information 
multiplied by the likelihood function, 2) Dempster-
Shafer(DS) which uses evidential reasoning /accrual to 
combine information of uncertainty, and 3) Modified 
Dempster-Shafer(MDS) which uses a combination of 
evidential reasoning and probability analysis. The 
methods are assessed for cases with and without 
feedback.[2] Over time, the evidence/probability 
accumulates for decision making and a learned decision is 
made when the belief/probability value is greater than a 
threshold. Simulations are conducted using a combination 
of a priori probabilities as derived from a learning-search 
algorithm and measurements from an IRAL 
(Identification of wind direction from Right, Ahead, and 
Left; relative to the landing configuration of the plane), 
an ESM (Electronic Support Measurement), and an 
IRST(InfraRed Search and Track) sensor for the 
identification and situational assessment of a runway. 
(Figure 1) The simulation runs are completed for 100 
measurements over a 1nm measurement updates.  All of 
the methodologies correctly identified the situation with 
the Modified Dempster-Shafer with feedback 
demonstrating the most efficient solution and shows 
promise for multisensor data integration for docking or 
landing purposes for autonomous mobile robots and 
avionics systems of UAVs.  

1.0 INTRODUCTION 
Advancing sensing capabilities are profoundly impacting 
aeronautical warfare. Offensive sensors such as 
Radar(SAR, FLIR), along with navigation sensors (GPS, 
INS) and defensive sensors (ESM, RWR, IRST) are 
enabling beyond-visual range engagements and providing 
most of the impetus for avionics improvements.[3]  
Despite these advanced sensing capabilities, 
improvements have focused on lower-level issues of 
information processing such as estimating an object’s 
kinematics, (Kalman Filtering), and identifying objects, 
(template matching),  but do not help to answer the 
higher-level question: “What is the situation?”  Currently, 
the human operator must integrate the lower-level 
avionics sensor information to assess the situation and 
with an increase in 1) number of on-board sensors, 2) 
reception of off-board information, and 3) increased 
aircraft responsibilities in swift combat operations, the 
appeal of automating the "situation awareness process" is 
rapidly growing [4]  
 
The automation of situational assessment starts with 
probability theory, but which one? 1) empirical 
probability values are derived from "long-run" 
interpretations of sampling distributions which are 
assigned a posteriori; 2) classical probabilities are 
defined by the potential for the event of interest to occur 
as compared to other equally probable outcomes and can 
be assigned a priori; and 3) subjective probabilities are 
assigned on the basis of an experience, of interpreting the 
available information.  Although there is a body of formal 
mathematical literature on experimental classical and 
empirical probability, situation awareness still derives 

 
Figure 1. Plane Identifying a Runway for Landing. 
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specific values from individual, personal judgment.  For 
military or defense applications, the appropriate 
probability often will be of a subjective type because 
frequently it is the only way that the learned occurrences 
of so-called singular or rare events can be 
probabilistically estimated.  Thus, the paper shows 
potentially real-time complement for the human-learned 
subjective reasoning specific to the situation. The report 
develops the methodology and presents simulated results 
for the three methodologies. 

2.0  PROBLEM FORMULATION 
2.1 Landing A Plane (Semi Autonomous) 
One of the many challenges facing a fully autonomous 
aircraft is an autonomous landing. When the situation is 
correctly identified, a pilot chooses a specific set of 
procedures in which to land the plane. The first thing the 
pilot gets is the wind conditions which can be audio, 
electronic, or scanning for a wind sock - which is a 
measurement update to the ILAR sensor.  Suffice to say, 
that the aileron and flaps controls are dependent on winds 
{crosswind vs. normal}, length of runway {short vs. 
long}, and surface conditions {soft vs hard}. Pilots also 
need current weather(nature) and runway(class) type 
information from offboard ATIS reports and airport 
directries, respectively; which is an identification update 
to the ESM and IRST sensors. 
 

2.2  Situational Learning 
To learn the situation, three methods are used. a: 1) 
recursive probabilistic approach (Bayes) 2) recursive belief 
function (DS) approach (without and with feedback), and 3) 
recursive modified belief function (MDS) approach 
(without and with feedback) to identify the type, nature, and 
class of the target runway, given measured data. A 
comparison is made to discuss the usefulness of the 
probability, belief, and modified belief functions for 
situational leaning. 
 
2.3  Scenario 
The  scenario is an aircraft identifying a target(runway) 
using multi-sensor integration to determine which control 
actions to use in landing.  There are three kinds of sensors: 
an IRAL, ESM, and IRST. Each sensor returns two 
elements: 1) a belief value (or probability value for the 
Bayesian approach) and 2) a ten bit measurement vector that 
represents the proposition to which the belief (or probability 
is attached).  There are ten (10) types of landing situations 
that can be grouped into four runway classes: {soft, short, 
long, commercial}, and three natures: four bits {left wind}, 
five bits {right winds}, and one bit {ahead-on winds}.  If a 
bit is set to 0, this reflects that the sensor declares that the 

runway in question is not of the type associated with that bit, 
and if the bit is 1, the runway may be of that type. 
 
In the project, I simulate a landing of an aircraft 100 nautical 
miles (nm) out and approaches the runway. The 
measurements are taken every 1 nm and with the assumed 
uncertainties which are approximately proportional to the 
distance between the aircraft and the runway.  The 
performance confidence(a priori sensor characteristic 
probability) is shown in Table 1. Each sensor is provided 
with an array of data.  The data set includes the {{range 
(nm)}, {10 measurement bits}, {sensor performance 
confidence value}}.  Two sets of data (for a heavy and light 
aircraft) are analyzed for the different methodologies. 
 
TABLE 1: Sensor Characteristics 
  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
 prior 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Left Wind P(LW| Tk) 0.80 0.80 0.80 0.80 0.10 0.10 0.10 0.10 0.10 0.10 
Right Wind P(RW| Tk) 0.10 0.10 0.10 0.10 0.80 0.80 0.80 0.80 0.80 0.10 
Ahead P(A| Tk) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.80 
Soft Field P(So| Tk) 0.60 0.15 0.15 0.15 0.60 0.60 0.15 0.15 0.15 0.10 
Short Field P(SF| Tk) 0.15 0.60 0.15 0.60 0.15 0.15 0.60 0.15 0.15 0.10 
Long Field P(LF| Tk) 0.15 0.15 0.60 0.15 0.15 0.15 0.60 0.15 0.60 0.10 
Commercial P(CO| Tk) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.70 

 3.0  THEORETICAL BACKGROUND 
3.1 Bayesian Probability Analysis 
From the notations of probability mathematics; the joint, 
marginal, and conditional probabilities can be combined 
to form the mutually exclusive properties of Bayes' Rule: 
 

 

P(Bj | Ai) = 
P(Ai | Bj) • P(Bj)

 ∑
i = 1

 N

 P(Ai | Bj) • P(Bj) 

 

(1)

 
where P(Ai|Bj) is the likelihood function, and P(Bj) is the 
update from the a priori information.  From Bayes' Rule, 
these axioms hold: 

  

) = 1 - P(A
P(φ) = 0
P(Ai i)
P(Ai ∪ Bj) = P(Ai) + P(Bj) - P(AiBj)
P(Ai) = P(Ai|Bj)•P(Bj) + P(Ai|Bj)•P(Bj)

 

(2)

 
To update the uncertainty based on the new evidence, 
Bayes' Rule is formulated as: 

 
P(C | Ai Bj) = 

P(Bj C | Ai)
 P(Bj | Ai )

 
 

(3) 
 

If C is an element of a mutually exclusive and collectively 
exhaustive set of potential outcomes, and B is a set of 
data that has been collected, then: 
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P(Ck | Ai Bj) = 
 P(Bj Ck | Ai)

 ∑
k = 1

N

P(Bj | Ck Ai) • P(Ck | Ai) 
 

(4)

 
from which it can be rewritten as:  

 

P(Ck | Ai Bj) = 
 P(Bj | Ck Ai) • P(Ck | Ai) 

 ∑
k = 1

N 
P(Bj | Ck Ai) • P(Ck | Ai) 

 

 

(5)

 
 

where: 
1. P(Ck|Ai)  is an a priori (or prior) probability of Ck 

occurring, based on the state of information Ai; 
2. P(Ck|Ai•Bj) is the a posteriori (or posterior) probability 

of Ck given the data Bj is observed and prior state 
information Ai; 

3. P(Bj|Ck•Ai) is the likelihood function, likelihood of 
observing data Bj conditioned on Ck and prior 
information state Ai; 

4. ∑
 k = 1

N

P(Bj | Ck Ai) • P(Ck | Ai) is the preposterior or 
probability of the observing the occurring data, given 
the prior state information, but conditioned on all 
possible outcomes Ck. 

 

It is possible to aggregate the probability statements from 
a lower level of abstraction to a higher one using the 
equations above, and the development can be derived for 
continuous as well as discrete events, and scalar and 
vector and matrix notations.   The likelihood expressions 
represent how confident or lack of confidence (subject to 
change) a given probability statement is.  The functions 
must be developed prior to collecting the data by analysis.  
Note that the preposterior is simply the combination of all 
the likelihood functions and the prior distributions. 
 

3.2.  Bayesian Probability Analysis of IRAL Sensor 
The Bayesian method is based upon the basic probability 
axioms.  The first step in the Bayesian approach is to 
determine, for each sensor, its likelihood function based 
upon runway situation type.  Thus, for the IRAL sensor, 
the relationship is: 

 
PIRAL (D|Tk) = ∑

i = 1

n

 PIRAL (D|Ni) • P(Ni|Tk) 
 

(6)
 

where Ni is Naturei (R - right, L - Left, A - Ahead), D is 
Data, and T is the type. PIRAL(D|Ni) must be determined 
from the data measured and the prior probabilities learned 
through experience and found in Table 1. The 
combination of theses values is shown by the relationship: 

PIRAL(D|L)+PIRAL(D|R)+ PIRAL(D|A) = P IRAL = 1 (7)
 

The data given is in the form of binary values for 
detection form a single sensor, such as : {{ 1, 1, 1, 1, 0, 0, 
0, 0, 1}, {0.7}} which is in the form {{Pr(Detect L), 

Pr(Detect R), Pr(Detect A)},{Pr(Prior)}}.  Taking into 
account the confidence of the data, whose bits have been 
set to one, yields the following equations which 
determine the required probabilities: 

 
PIRAL(D|L) = [1+Pr(Prior)] •Pr(Detect Ni)•PIRAL 

(8)
 

So, PIRAL(D|L) = P IRAL(D|A)  = 0.3859,  PIRAL(D|R)= 0.227.  

 

The above analysis satisfies the condition that if the 
confidence of the data is zero, then the maximum 
uncertainty is achieved as well as the entropy.  For the 
above data, if the confidence is zero, each probability 
would then equal 0.3333, which satisfies the condition of 
maximum entropy.   

3.3.1  Bayesian Probability Analysis of ESM Sensor 
Following the same procedure, the ESM sensor (over its 
set) gives: 

 
PESM (D|T k)=PESM(D|T 1)•P(T1|Tk)+.. +P ESM(D|T N)• P(T N|Tk)   (9)

 
and the relationship below holds: 

 
P(Ti|Tk)  = 



1 for i = k
0 for i  ≠ k  

(10)
 

So the probability of the type data can be simplified for 
the ESM sensor, just equal to the measured data itself.  
The interpretation of the data for the ESM sensor is 
similar to that the IRAL sensor.  For example, if the ESM 
sensor returns the data string: {{1, 1, 0, 0, 0, 1, 1, 1, 0, 
0}},{0.3}} of the form {{P(T1-10)}, P(Prior)}; then the 
probabilities would be determined as follows: 

 ∑
i = 1

 N

 PESM(D|Ti) = PESM = 1
 (11) 

 
1 = ∑i = 1

N

 [( 1 + Pr(Prior)  • Pr(Detect  Ti))] • 
1

 PESM 
(12)

 
 

So with the data given PESM(D|T(1,2,6,7,8)) = 0.104 
PESM(D|T(3,4,5,9,10)) = 0.08   

3.2.  Bayesian Probability Analysis of IRST Sensor 
The IRST is interpreted the same as the ESM sensor.   

3.3  Bayesian Probability Analysis: Integrated Sensors 
The sensor data integration is completed by the Bayesian 
update of information.  Since the above information is 
assumed available, then these independent likelihood 
functions can be integrated together to get the joint 
likelihood function based upon runway situation.  The 
integration of the data is completed as: 

 
PInt(D|Tk) = PIRAL(D|Tk)•PESM(D|Tk)•PIRST(D|Tk)

 
(13)

 

but, the information desired is the likelihood of runway 
type, given the data; instead of, likelihood of data given 
the type.  Using Bayes' Rule, the relationship is: 
 

 
PIntegrated(Tk|D) = 

PIntegrated(D|Tk) • PPrior(Tk)
 P(D)  

(14) 
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where the normalizing factor is: 

  
P(Data)  = ∑

i = 1

 N

 PIntegrated(Data|Tk) • PPrior(Tk) 
 

(15)
 

To determine the runway class and nature, the axioms of 
probability are used, where the joint likelihood function 
and the prior information are used to obtain the data: 
 

Wind Nature:  {Left, Right, Ahead}   

 P(Ni|D)  = ∑
i = 1

 N
 PIntegrated(Tk|D) • P(Ni|Tk)  (16) 

       P(L|Tk) + P(R|Tk) + P(A|Tk) = 1  (17) 
 

Runway Class: {Soft, Short, Long, and Commercial}  

   P(Ci|D)  = ∑
i = 1

 N
 PIntegrated(Tk|D) • P(Ci|Tk)  (18) 

        P(So|Tk) + P(Sh|Tk) + P(L|Tk) +  P(C|Tk) = 1  (19) 
 

A concern in using Bayes' Rule is the need for a prior 
distribution over the events of interest.  In the real world, 
this necessitates a subjective interpretation of probability 
or by arbitrarily setting the probabilities for each outcome 
equal, called the principle of indifference. The Bayesian 
approach to sensor integration interprets the confidence 
information at each measurement and its disadvantage is 
that uncertainty information is not dealt with. 
 

3.4 Dempster-Shafer Evidential Reasoning 

The method evidential reasoning is focused on 
(un)certainty.  The combination of the data is based on 
belief functions, similar to that of Bayes probability 
functions.  Dempster created the belief function and his 
student, Shafer, used it for evidential reasoning. [5] 
 
To start the analysis, Θ is a Frame of Discernment, which 
is a finite set of single hypothesis about a problem.  A 
power set 2Θ, is the set of all subsets of Θ. Note, if Θ has 
N elements, then the power set has 2N - 1 elements.  From 
the power set, uncertainties (upper - support) and (lower - 
plausibility) are used to analyze the results.  Belief 
measures are metrics of uncertainty declarations within 
evidence theory.  When two opinions are pooled, a belief 
measure is formed and result in the upper and lower 
measures of uncertainty.  The Shafer belief functions are: 
 

 1.  b(φ) = 0, belief in the impossible is zero 
 2.  b(θ) = 1, the belief in the universal event is unity 
 3.  For every positive integer n and every collection of 

subsets of Θ {A1, …, AN}  

 
b(∪ AN) ≥ ∑

i

 bAi - ∑
i < j

 bAiAj+…+ (-1)n + 1b(A1…AN) 
 

      where ∪ AN is the union of A1 through AN 
 
Although the first two are similar to probability analysis, 
the last deals with sets that are not mutually exclusive.  

Note that the fourth Bayes' probability axiom, conditional 
probability, does not have a counterpart conditional 
belief.  Evidence theory possesses the ability to assign an 
uncommitted belief to the entire frame of discernment (or, 
assigning belief to a level of admitted ignorance regarding 
the meaning of evidence).   
 Bel(A) + Bel(A) ≤ 1  (20) 

where Bel(A--) is the belief in not A. 
 
Dempster's rule is used to combine probabilistically, 
independent sets of evidence.  Two independent belief 
functions Bel1 and Bel2 existing over a common frame 
discernment, Θ, is divided into different subsets {AN} 
and {BM} for each of the two belief functions.  
Dempster's rule of combination; 

 
Bel(Ai Bj) = 

Bel1(Ai) Bel2(Bj)
1 - Q  

 (21)
 

where   Q = ∑
i j

 Bel1(Ai) Bel2(Bj)∑  such that AiBi = φ. 
 

In effect, Q accounts for conflicts in the belief 
distributions from the sources Bel1 and Bel2 and assures 
that the combined belief is normalized to the unit interval.  
Note, that the formulation of Dempster's rule is also valid 
when {AN} and {BM} are identical.  When there is no 
uncommitted belief (ignorance) in either belief function, 
Dempster's rule is identical to the Bayesian rule.  The two 
rules are also identical when the frames of discernment 
for the belief functions being operated upon contain the 
same hypothesis and their conjunctions: 

   {AN} = {BM} = {A, (A--)}  
For the sensor that computes the belief measures BelK for 
K elements of the power set and an uncommitted 
(ignorant) belief IgnU, the following equation represents 
the belief for each element k at the time n resulting from 
applications of Dempster's Rule:  

Belk(n)=






Belk  if  n=1

Belk[(Belk+Ignu)n-1+∑
j = 1

 n - 1

 Ign
j
u]

∑
k = 1

 K

 {Belk•[(Belk+Ignu)n-1+∑
j = 1

 n  - 1

 Ign
j
u]}+Ign

n
u

if n>1

 

(22)

    

The denominator, for n > 1, normalizes the belief 
assigned to all elements of the power set to sum to 1.  
Note that the ignorance function at time n is a simple 
function of the number of sensor reports.  Using the 
Equation above, the belief can be calculated over several 
observational cycles and included in an observational 
direct acyclic graph. 
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Dillard [6] develops combination rules for multiple sensor 
integration cycles that are similar to the single sensor 
cumulative (n- observations) belief function.  The 
generalization to the case of i multiple sensors is: 

 
Bel k(n) =

∑
i

 n
 K1 K1 … KN=K[Bel 1(n) •Bel 2(n) •… •Bel j(n) ]

 1 - Q  
(23)

 
given the nth observation and the multisensor (joint or 
integrated) belief in proposition or object-class k in the 
frame of discernment, Θ. For the ignorance function: 

 
Belk(n) = 

∏
j=1

i
 j1 j1...jN=J [Ign1(n)•Ign2(n)•…•Ign j(n)]

1 - Q  
(24)

 

where Q = ∑i
 n

 K1  K 2….K N = K  [Bel1(n) •Bel2(n) •…. •Belj(n)] 
 

is the belief attributed to conflicting declarations and used 
in normalizing the Equations.  The cumulative belief 
across all sensors through time period n for proposition of 
target Tk is given as: 
 

Belk(n) = 






Belk(1) if n = 1

 
{Belk(1) • ∏

j = 2

n

 [Belk(j) + Ignu(j)] + ∑
j = 1

 n - 1
 ∏
i = 1

j

 Ign(i)}

∑
k = 1

 K

 {Belk(1) • ∏
j = 2

n

 [Belk(j) + Ignu(j)] + ∑
j = 1

 n - 1

 ∏
i = 1

j

 Ign(i)} + ∏
j = 1

n

Ign(j) 
 if n >1

 

(25) 

 

where Belk(n) is the belief associated with element k of 
the frame of discernment by sensor i in the time period n. 
Igni(n)  is the ignorance (uncommitted belief) declared by 
sensor i in the time period n. 
 

Finally, the upper and lower uncertainties must be 
computed from the belief function.  Letting the power set 
be {Dm} after Dempster's rule is applied, then the lower 
bound of the uncertainty is the support, S, and is the sum 
of all beliefs assigned the element itself and any elements 
that are subsets of it; 

  S (Dj) = ∑
k

Bel(Dk)  (26) 
 

where each Dk must be a subset of Dj. 
 
The upper bound of uncertainty is the plausibility , Pl, 

which is defined to be 1 minus the support of Dj which is 
the union of all elements whose intersection with Dj : 

  Pl(Dj) = 1- S( Dj)  (27) 
 

 where  DjDj = φ  is the null event. 
 

The time(measurement number) for which a decision 
can be made is 1) BELIEF (Pr{x}>0.5): or as soon as all 
but the identified plausible objects are not plausible, 2) 
PLAUSIBILITY (all Pr{x} < 0.5). Note: probability is 
assigned to events or situations, whereas, beliefs are 
assigned to proposed situations.   The meaning of the 
belief measure is the reliability of receiving the 
information and its meaning, and the integrated belief can 
be feed back to enhance situational awareness (Figure 3 
vs. Figure 2).  

3.4.2  Modified DS with Probability Updates 

Integration

IRAL(1)

ESM (1)

IRST(1)

IRAL(1)
ESM (1)
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ESM (1)
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IRAL(1,2) IRAL(1,2)
ESM (1,2)
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ESM (1,2)
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ESM (N-1)

IRST(N-1)

IRAL(N)
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IRST(1,N)

 IRAL
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 ESM
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 IRST
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IRAL(1,N)
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IRST(2)
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Figure 2. Dempster-Shafer Reasoning Without Feedback. Figure 3. Dempster-Shafer Reasoning With Feedback. 
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3.5.1 Dempster-Shafer Analysis of IRAL & ESM Sensor  
Each entry has two elements: a belief value and an n-bit 
vector that represents the proportion to which the belief is 
attached.  The row-column intersections of an un-
normalized belief value is the product of the beliefs.  

 Beld(B) = BelESM(C) BelT
IRAL(D)   

(28)
 

where: 
 

Beld(B)  is the matrix of beliefs that result from 
Dempster's rule on the frame of discernment, B. 

BelESM(C) is the column vector of beliefs from the ESM 
  sensor with Frame of Discernment, C.  

BelTIRAL(D) is the transpose of the column vector of beliefs 
from the IRAL sensor on its frame of discernment, D.  

Belij = CiDj. 
 

The ESM(or IRST) assigns the remaining Belief as:  

 

 

BelESM(Bits(1,0)Tk)=





PESM(D|Tk)

∑
k

 
 PESM(D|Tk)

 if pESM>0.5pmax 

0  otherwise  

(29)

 
and the plausibility as:  

 

PlESM(Bits(1,0)Tk)=





PESM(D|Tk)

∑
k

 
 PESM(D|Tk)

 if pESM<0.5pmax 

0  otherwise  

(30) 

 

where BelESM(Bits(1,0),Tk)  represents the bit vector 
associated with the kth target runway type and 

PESM(data| Tk) = Pmax  for the most likely Tk.  Note that the 
DS approach uses a truncation point (0.001) to terminate 
the iteration and is called truncated DS processing, as it 
truncates the low belief values and assigns that belief to 
the uncommitted (or ignorance) state. 

4.0  SIMULATION RESULTS 
A MATLAB program simulates the Bayes, DS, and MDS approaches with measurements from an IRAL, ESM, & IRST. 
3.1  Bayesian Analysis (Probability Analysis) 
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Type {1:10}. Nature of Wind (Right, Left, Ahead) Runway Class(Soft, Short, Long, Com) 

Figure 3.1. Bayesian Runway Situation Identification  
 

3.2   Dempster-Shafer Without Feedback (Belief and Plausibility Functions) 
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Figure 3.2. Dempster-Shafer Without Feedback Runway Situation Belief. 
 

Type 4

Type 10

Type 6

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Case  2: DS wo/ Feedback Plausibility

Pl(Ti)

Measurement No.

Type 5

Type 3

Type 2

Type 7,1,8,9

 

Right Wind

Left Wind

Head Wind

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Case  2: DSwo/Fdbk Nature Plausibility

Pl(Ni)

Measurement No.  

Long Field

Commerical

Short Field

Soft Field

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Case  2: DSwo/Fdbk Class Plausibility

Pl(Ci)

Measurement No.  
Type {1:10}. Nature of Wind (Right, Left, Ahead) Runway Class(Soft, Short, Long, Com) 



E. Blasch, “Learning Attributes For Situational Awareness in the Landing of an Autonomous Aircraft,” Proceedings of the 
Digital Avionics Conference, San Diego, CA, October 1997, pp. 5.3.1 – 5.3.8. 

 5.7

Figure 3.3. Dempster-Shafer Without Feedback Runway Situation Plausibility.  
3.3  Dempster-Shafer With Feedback (Belief and Plausibility Functions)   
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Figure 3.4. Dempster-Shafer with Feedback Belief for Runway Situation Identification. 
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Figure 3.5.  Dempster-Shafer with Feedback Plausibility for Runway Situation Identification. 

3.4. Modified Dempster-Shafer Without Feedback (Belief and Plausibility Functions)  
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Figure 3.6.  Modified Dempster-Shafer without feedback Belief for Runway Situation Identification. 
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Figure 3.7.  Modified Dempster-Shafer without feedback Plausibility for Runway Situation Identification. 

3.5 Modified Dempster-Shafer With Feedback (Belief and Plausibility Functions)   
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Type {1:10}. Nature of Wind (Right, Left, Ahead) Runway Class(Soft, Short, Long, Com) 
Figure 3.8. Modified Dempster-Shafer with Feedback Belief for Runway Situation Identification. 
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Figure 3.9. Modified Dempster-Shafer with Feedback Plausibility for Runway Situation Identification. 
 

The results show Short Field (Class) and Left Wind 
(Nature) ⇒ (Type 4) for the light aircraft case. 

4.0  DISCUSSION and CONCLUSIONS 
4.1 Comparisons of Belief & Plausibility Functions 
Note that in all the cases, the Belief is less than the 
Plausibility, or Bel(A) < Pl(A).  This relationship holds 
since at the start, the plausibility of any nature, type, or 
class is possible and the belief is zero.  As time goes on, 
the plausibility of an the identified type remains high and 
the belief increases; while the plausibility and belief of 
the other unidentified functions decrease. 
 
 

Time to Reach Decision Type  Nature Class Type Nature Class
Case 1 (Heavy) R, Long       
Bayesian  21 10 28    
 Belief  Belief Belief Plause Plause Plause
DS Without Feedback 26 9 18 24 8 23 
DS With Feedback 6 4 5 7 8 5 
MDS Without Feedback 10 9 8 10 8 8 
MDS With Feedback 5 4 5 6 3 5 
Case 2 (Light) - L, Short       
Bayesian 26 16 43    
 Belief  Belief Belief Plause Plause Plause
DS Without Feedback 24 13 18 23 16 24 
DS With Feedback 5 2 3 5 3 4 
MDS Without Feedback 17 7 10 18 8 16 
MDS With Feedback 3 2 2 4 3 4 

 

4.2 Comparisons of Bayesian, DS, and Modified DS 
The Bayesian and Dempster-Shafer approaches identified 
the correct nature, type, and class; but the difference is the 
time in which the correct decision could be rendered.  The 
Modified Dempster-Shafer approach with feedback 
rendered the correct answer more efficiently than the 
Dempster-Shafer approaches without feedback, the 
conventional Dempster-Shafer approach, or the Bayesian 
approach.  Using the MDS with feedback simulates the 
learned experience of efficient pilot's and may be suitable 
for the landing and docking of autonomous UAVs. 
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