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Abstract 

A joint probability data association tracking algorithm 

typically associates only position measurements[1].   

With multiple-interacting targets in the presence of 

clutter, data association can be confused by spurious 

measurements.  In this paper, we propose a set-based 

track and identification data association (SBDA) 

technique to leverage object identification information. 

We investigate the SBDA technique for a scenario in 

which a tracker has access to both coarse position 

measurements and belief identification information to 

enhance data association.       

 

1.  Introduction 

The problem of multitarget tracking and identification 

(ID) is a subset of sensor fusion, which includes filtering, 

estimation, and prediction.  One of the prominent tracking 

algorithms is the Joint Probability Data Association Filter 

(JPDAF)  [1].  The JPDAF algorithm seeks to track a set 

of objects from only positional information, but 

improvements are underway to use a signal-detection 

analysis to track a object based on the highest signal return 

[2]. One way to enhance data association is to use target 

attributes to mitigate clutter [3].  To further enhance the 

capabilities of the JPDAF algorithm, it would be useful for 

a sensor to not only get the position of the target, but also 

the target identity. However, a true identity might not be 

known, so believable measurements must be used. A 

combined track and ID algorithm can improve track 

quality, mitigate clutter confusion, and enhance target 

recognition.    

 

Kinematic and ID measurements can detect, track, and 

classify targets of interest. The ultimate objective of the 

tracker includes identifying targets as they move through 

space.  In a dynamic and uncertain environment, the 

tracker must associate the correct target to the position 

measurements.  Multitarget tracking in the presence of 

clutter has been investigated through the use of data 

association algorithms [1]. Likewise, other multisensor 

multiplatform fusion algorithms focus on identifying 

targets from multiple look sequences of sensor data [4]. 

The merging of these algorithms can be accomplished by 

investigating the mathematics of the algorithms.  Track 

fusion uses kinematic measurements and ID fusion uses 

target-feature measurements to update state matrices. By 

utilizing the merits of data association in multilevel data 

association, we seek to simultaneously track and identify 

targets [5].  
 

In tracking approaches that use data association, there is 

an assumption that the information for tracking is provided 

through position measurements.  The problem is that the 

tracker must isolate the target of interest from the cluttered 

position measurements.  If position measurement 

information is dense, the tracker can make an incorrect 

assignment of the position measurements to target tracks.  

As an example, Figure 1 below shows a case in which the 

position measurements cause the tracker to get confused.  

In this case, object 1‟s and object 2‟s position 

measurements fall within the kinematic gates of both 

objects. 

 

 
Figure 1.  Data Association Problem with only Position 

Measurements. 

 

As we can see from the Figure 1 (far left), a kinematic gate 

can isolate position measurements that are near the 

predicted measurement for each object‟s track.  In the case 

that one of the true measurements falls within the 

kinematic gate of the predicted position, that measurement 

would be designated as the true position measurement.  If 

position measurements from another object fall within the 

predicted kinematic gate of the object track (Figure 1 
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middle), the position measurement of object 2 would be 

assigned to object 1‟s track which would be an incorrect 

assignment.  Once the tracker locks on to another object, 

or uses the position hits of the other object‟s clutter, the 

tracker assumes that the hits of the second object are true 

hits for the first object (Figure 1 right).   

 

One way to correct for this measurement-to-target 

assignment mistake is to leverage other information, such 

as the target identity to help resolve which position 

measurements are assigned to specific object tracks.  For 

example, we could use a high range resolution (HRR) 

sensor to ID an moving target and use the false and true 

HRR scans as positional information [5]. To illustrate how 

the ID information may help in data association, Figure 2 

illustrates the process of how a target-ID can refine the 

positional measurement to select the validated 

measurement from the cluttered measurements. 

 
Figure 2.  Data Association using ID and Position 

Measurements. 

 

A few tracking and identification algorithms have been 

proposed [6,7,8].  These approaches combine target 

recognition and classification techniques with tracking. 

Layne [9] utilizes an automatic target recognition (ATR) 

and tracking filter in a multiple model estimator (MME) 

approach. We seek to expand on this idea by allowing for 

the capability to ID relevant targets. Identification goes 

beyond recognition by assigning a single target ID to each 

target. By incorporating a general theory for target 

identity, any combination of sensors and targets can be 

tracked for a variety of applications such as medical, 

manufacturing, and economic scenarios. 
 

This paper develops a set-based track and identification 

data association (SBDA) technique to distinguish between 

multiple moving targets in clutter.  Section 2 overviews  

track and ID data association fusion. Section 3 describes 

the problem formulation and Section 4 details 

mathematics of the algorithm. Section 5 presents results 

and Section 6 draws some conclusions.    

 

2. Track and ID Fusion 

The ability to perform track and ID fusion requires sensor-

processed classifications from different levels.  These 

levels could be generic(car), feature(wheeled), type(sedan) 

or specific(license plate). Like multitarget data association 

algorithms for accurately tracking targets in the presence 

of clutter, we assume that detected targets can be tracked 

from a sequence of center-of-gravity and pose positional 

data.  However, for a given sensor/target scenario, we 

assume detected classifications can effectively discern 

target identity. Identity information can be achieved either 

through experience of target movement, training, or 

predicted.  For example, identifying a target requires the 

correct estimate of the target‟s orientation and speed. Two 

targets of the same type may be crossing in space, but 

since they can not occupy the same location, they would 

each have a different orientation relative to the sensor.  By 

exploiting the orientation and speed information, each 

target can be assessed for the correct track-ID association.  

 

The ability of an sensor to track and ID targets 

simultaneously includes finding the target center for 

tracking, determining the target pose, and searching the 

neighboring features for discerning salient features to 

associate the features to a specific class of targets.  By 

partitioning kinematic and ID sensor data, associations at 

different levels can be used for either coarse(track) or 

fine(ID) target analysis.  For example, features[5] can be 

used to get an identity with uncertainty; however if many 

features are fused, the identity increases and helps to 

eliminate clutter. Identifying a target is a subset of ATR in 

which the tracker must use the available features to discern 

the object.   Certain features are inherently more useful in 

recognizing a target than others.  For instance, identifying 

a large car versus a small car would result from an analysis 

of the length-to-width ratio.   Additionally, decoupling 

information can be used for a single-platform observer to 

fuse information from a sequence of sensor data or for a 

multiple-platform scenario [4] in which fusing is 

performed from different geometrical positions.  For 

further information on the development of the belief-ID 

derivation, see [5].  
 

The problem of track level and ID-level fusion has 

characteristic tradeoffs about which the tracker must 

decide. For close targets, it is useful to keep an accurate 

track on multiple targets. The intelligent processor 

performs target-to-ID association at multiple levels and 

can either track targets at a low resolution or ID targets at 

a higher resolution. By leveraging knowledge about target 

types, fusion algorithms can significantly reduce 

processing time for tracking and identifying targets. For 

separated targets, resources may exist to identify each 

target. Hence, due to a limited set of resources and/or 

processor time, a trade-off exists between the 

identification and tracking of a target.  

 

3. Problem Formulation 

Consider an environment in which a tracker is monitoring 

multiple moving targets with stationary clutter. By 

assumption, the tracking sensor is able to detect target 

signatures. Assume that the 2-D region is composed of T 
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targets with f features. Dynamic target measurements z are 

taken at time steps k, which include target kinematic and 

identification features z(k) = [xt(k), f1,… fn].  

 

Any sensor can measure independently of the others, and 

the outcome of each measurement may contain kinematic 

or feature variables indicating any target. The features for 

each sensor are similar, but need to be extracted and 

applied to the separate targets for classification.  The 

probability density of each measurement depends on 

whether the target is actually present or not.  Further 

assume that a fixed number of kinematic and feature 

measurements will be taken at each time interval, where 

we model the clutter composing spurious measurements. A 

final decision form the SBDA algorithm is rendered as to 

which [x, y] measurement is associated with the target-

type.  
 

The multisensor-multitarget tracking and identification 

problem is to determine which measured kinematic 

features should be associated with which ID features in 

order to optimize the probability that targets are tracked 

and identified correctly after z measurements. The 

multilevel feature fusion problem is formulated and solved 

by using concepts developed using the belief filter [5]. For 

the symmetric-target case, the "association rule" associates 

the measurement with the highest target probability.  

 

4. Track and ID Data Association 

 

4.1 Tracking Belief Filter  

The target state and true measurement are assumed to 

evolve in time according to: 
 

x(k + 1) = F(k) x(k) + v(k)  (1) 

 

z(k) = H(k)x(k) + w(k) (2) 
 

where v(k) and w(k) are zero-mean mutually independent 

white Gaussian noise sequences with known covariance 

matrices Q(k) and R(k), respectively. We assume each 

target has a separate track and set up multiple state 

equations. Spurious measurements are uniformly 

distributed in the measurement space.  Tracks are assumed 

initialized at an initial state estimate x(0), contain a known 

number of targets determined from the scenario, and have 

associated covariances [1]. 
 

The tracking ID filter devotes equal attention to every 

validated kinematic or ID measurement and cycles through 

object measurements until a believable set of object IDs is 

refined to associate one object per track. For an initial set 

of measurements, a hypothesized number of tracks and 

objects of interest is assumed to comprise the entire set.  

Objects are possible position measurements without ID 

confirmation. Successive measurements and updates from 

the combined feature and track measurements determine 

the set of plausible targets. The measurement filter 

assumes the past is summarized by an approximate 

sufficient statistic – track state and ID state estimates 

(approximate conditional mean) and covariances for each 

object. 

 

The belief measurement information Bel
t

k = M  Bel
t

k-1, 

derived from the classification measurements of the target 

profile, represents the belief update states of the ID 

measurements. The M matrix is the Markov transition 

matrix, which represents the similarity of objects.  The 

similarity of objects represents how the belief in an object 

type may be related to other objects of the same or 

different type. 

 

The measurement-to-track association probabilities are 

computed across the objects and these probabilities are 

computed only for the latest set of measurements. The 

conditional probabilities of the joint track-ID association 

events pertaining to the current time k are defined as jotk
, 

where jotk
 is the event that object center-of-gravity 

measurement j originated from object o and track t, j = 1,, 

mk; o = 0, 1, …, On, where mk is the total number of 

measurements for each time step and On is the unknown 

number of objects. Note, for purposes of tracking and ID, 

we define i = 1, … , mk for the entire measurement set 

while j = 1,…, mk is for tracking and o = 1…, mk is for 

object ID. 

 

A validation gate for each object bounds the believable 

joint measurement events, but not in the evaluation of their 

probabilities.  The plausible validation matrix:  = | jt | 

is generated for each object of a given track which 

comprises binary elements that indicate if measurement j 

lies in the validation gate of track t.  The index t = 0 

represents for "the empty set of tracks" and the 

corresponding column of  includes all measurements, 

since each measurement could have originated from 

clutter, false alarm, or the true object [1].  

 

For a track event, we have: 
 

 | ̂jt()|  = 


 1  if 

i

jt  ; [z]
i

k  t

0 otherwise
   (3) 

 

where measurement [z]
i

k originated from track t 

 

For an ID-belief event, which is above a predetermined ID 

threshold,  

 | ̂oO()|  = 


 1 if 

i

oO  ; [Bel]
i

Ok  o

 0 otherwise
 (4) 

where measurement [Bel]
i

Ok is associated () with object 

o. 

 

Since SBDA is tracking multiple objects, o, assuming one 

for each track, t, SBDA has to determine the ID-belief in 

each object from a known database comparison. While 



E. Blasch and L. Hong, “Data Association through Fusion of Target track and Identification Sets,” Fusion 2000, Paris, France. July 10-

13, 2000, TuD2_17 -TuD2_23 

hese IDs are processed over time to discern the object, for 

each measurement, SBDA must determine if the track-ID 

measurements are plausible.  SBDA uses the current ID-

beliefs to update the association matrix.  If the belief in the 

object is above a threshold, SBDA declares the 

measurement i, to be plausible for the target. Note, for 

plausibility, the threshold is lower than an ID declaration. 

 

4.2 Data Association 

Since we have assessed the continuous-kinematic 

information and the discrete-classification event, we can 

now assess the intersection of kinematic and ID 

information for simultaneous object tracking and ID. Note, 

ID goes beyond object detection, recognition, and 

classification, where we define ID as the classification of 

an object-type for a given track to associate an object 

classification to a track.  For instance, two objects of the 

same class still need to be associated with a specific track.  

We need to address feasible events for either a validated 

kinematic measurement or a validated ID. A kinematic-ID 

joint association event consists of the values in  

corresponding to the associations in jot, 
 

 | ̂jot()|  = 


 1  if 

i

jot   *

0 otherwise
   (5) 

 

where (*) measurement [z]
i

k originated from track t with a 

[Bel]
i

ok for a given Oot and 

 

  ̂jot() =  ̂jt()  ̂oO(). (6) 

 

Note, we define the indices as jot since O is the number of 

objects which is equal to the number of tracks. 
 

These joint events will be assessed with “” weights [1] to 

determine the extent of belief in the associations. To 

process the believability of track associations, augmented 

with the ID information, we set up a matrix formulation.  

For example, we have a set of kinematic measurements zi 

with a Belo and put them into the event association matrix 

as illustrated in Figure 3.   The upper left of a box 

represents the track information where a “1” indicates the 

kinematic measurement lies within a gated position 

measurement. The lower right represents the belief in an 

object type of any class except the unknown class where a 

believable object receives a “1”.  Columns are for tracks 

and rows for measurements.  These generalized equations 

propagate ID-filtered, predicted ID measurements in time. 

 

In the case of joint association, SBDA processes event 

matrices with an “AND” function allowing for plausible 

events from either the track or classification plausible 

events. To determine the event plausibility, SBDA uses 

the validation region for track measurements and uses a 

threshold, or classification gate, to determine the match 

for a target-type ID associated with a given track. Figure 4 

illustrates the “AND” function. Note, SBDA rejects non-

believable measurements and measurements that lie 

outside the kinematic validation gate. 

 

 
Figure 3. Tracking and Classification Joint Association 

 

 
 

Figure 4. Believable Events for the association matrix. 

 

For the determination of the weights assigned to these 

associations, SBDA needs to set up the state and 

probability values.  A track-ID association event has [1] 

 

 i) a single object-type measurement from a source: 

  

  
o = 0

O
n

    ̂jot(
i

jot) = 1    j (7) 

  

 ii) and at most one object-type measurement ID 

originating from a object for a given track:  
  

 t() =

 
j = 1

mk

    ̂jot(
i

jot)    1     (8) 

 

The generation of event matrices, 
^

 for each track, 

corresponding to ID events can be done by scanning  

and picking one unit/row and one unit/column for the 

estimated set of tracks except for t = 0. In the case that 

SBDA has generated event matrices for an estimated 

number of tracks with different object types, SBDA needs 

to assess the combination of feature measurements to infer 

the correct number of tracked objects that comprise the 

set.  The binary variable t( jotk
) is called the track 

detection indicator [1] since it indicates whether a 

measurement is associated with the object o and track t in 

event jotk
, i.e. whether it has been detected. 
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The measurement association indicator 
 

  j(jotk
) =

 
j = 1

mk

    ̂jot( jotk
)  (9) 

 

indicates measurement j is associated with the track t in 

event jotk
. 

 

The number of false measurements in event  is 

 () =  
j -1

m

  [ 1 -  j() ]   (10) 

The joint association event probabilities are, using Bayes' 

Formula: 
 

P{(k)|Zk} = P{(k)|Z(k),m(k),Zk -1}  

                = 
1

c
 p[Z(k) | (k),m(k),Zk -1] P{(k) | m(k)}  

                =  
1

c
 

j = 1

m(k) - (k)

  V {ftt
(k) [zj(k)]}

j  (11) 

where c is the normalization constant. 
 

The number of measurement-to-target assignment events 

(k) is the number of targets to which a measurement is 

assigned under the same detection event [m(k) - ].   The 

target indicators t() are used to select the probabilities 

of detecting and not detecting events under consideration. 
 

4.3 Fused Track and ID State Estimation 

Assuming the targets conditioned on the past observations 

are mutually independent, the decoupled state estimation 

uses the marginal association probabilities, which are 

found from the joint probabilities by summing all the joint 

events in which the marginal track and classification 

events result.  The beta weights [1] are: 

 

  
t

jok
 =

 P{jotk

 | Zk}   

  = 


 

  P{jotk
 | Zk}^ jo(jotk

) 

 

SBDA decomposes the object-state estimation with respect 

to the location of each object of the latest set of validated 

belief-set and kinematic-set measurements.  The 

measurements have been used to get the classification 

beliefs in the object types, to set up a simultaneous 

tracking and ID recursion for each object in the set, where 

ID is the classification of each object for a given track of 

data. For each object measurement, we use the total 

probability theorem to get the conditional mean of the state 

at time k can be written as: 

 

 X
^  t

k|k = 
i = 0

 
m

o

k

  X
^  ti

k|k 
ti

k , (12) 

 

where X
^  t

k|k is the updated state conditioned on the event that 

the i
th
 validated object measurement is correct for track t.  

The covariance propagation is:  

 

 P
t

k|k-1 = F
t

k-1 P
t

k-1  (F
t

k-1)
T
  + Q

_ t

k-1, where 

Q
_

 k = 






Qk 0

0 Bk
 

for each track t. 

 

We can obtain the innovation covariance Sk with the 

associated Rk and measured Dk by: 

 S
t

k = H
o

t

k
 P

t

k|k-1 (H
o

t

k
)
T
  + R

_
 
t

k, where R
_

k = 






Rk 0

0 Dk
 

 

Since Sk is the innovation covariance update, we can use 

Sk to gate measurements based on the uncertainty with the 

associated track and IDs. 
 

Validation: At k, two measurements are available for 

object o for a given track t: z
T

k-1, and z
T

k, from which 

position, velocity, pose, and ID features can be extracted 

form the belief track vectors. Validation, based on track 

and ID information, is performed to determine which 

track-belief measurements fall into the kinematic region of 

interest. Validation can be described as 

 

 (z
t

k - ẑ
lt

k|k-1)T [S
t

k]
-1

 (z
t

k - ẑ
lt

k|k-1)     for l = 1 … m
o

k (13) 

 

where  is a validation threshold obtained from a 2 table 

for a degree of freedom of 14 (4 for kinematic states and 

10 for target beliefs) and Sk stands for the largest among 

the predicted track belief covariance, i.e., 

det(Sk)  det(S
t

k) for t = l,2,...,n. where n is the number of 

states ẑk|k-1 is a combined predicted track belief given by 

E{zk|{
s}

s

o = 1, Zk-1} where s is the set of object beliefs 

for a track. 

 

Data association for 
ti

l  : Data association performed for 

each belief object-track is similar to that in PDA and the 

details can be found in [1].  The association probabilities 

for l validated object measurements are: 
 

 
 t
l   = 

e
t

l

b + 
l = 1

m
o

k
 

  e
t

l

, l = 1, 2, …, m
o

k  (14) 

   

 
 t
0   = 

b

b + 
l = 1

m
o

k
 

  e
t

l

  , (15) 
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 where e
t

l  = P
-1

G  N(0, S
t

k ) (16) 

  b  = m
o

k ( 1- PDPG) [PDPGVk]
-1

  (17) 

 

with m
o

k  defining the number of validated object 

measurements, PG assessing the probability that 

augmented belief track measurements fall into the 

validation region, and PD representing a detection 

probability. The volume of the validation gate is 

 

 Vk = Cd d/2 |Sk| 
1/2

, (18) 

 

where Cd is the volume of the unit hypersphere of 

dimension d, the dimension of the augmented belief-track 

measurement . 

 

Kinematic belief-probabilistic update: The object belief-

probabilistic track update is performed as a full rate system 

to combine the state, innovation, and covariances. 

 X
^ t

k|k = X
^ t

k-1|k-1 + W
 t
k  

l = 1

m
o

k

  
t

lk 
t

lk   (19) 

and 

 P
t

k|k = 
 t
0  P

t

k|k-1 + (1 - 
 t
0) P

*

k|k +  

 W
 t
k  









l = 1

m
o

k

   
 t
lk 

t

lk [
t

lk]
T - 

t

k[
t

k]T  (W
t

k)
T
 (20) 

where

 P
*

k|k = [ ] I - W
 t

k H
o

t

k
 P

t

k|k-1 and k = 
l = 1

m
o

k

  
 t
lk 

t

lk

 (21) 

 W
t

k = P
t

k|k-1 [H
o

t

k
]
T
 (S

t

k)
-1

   (22) 

  

where H
o

t

k
 is the measurement matrix that is calculated for 

each object pose, , and estimated position of track t. 

 

5. Initial Results 

The SBDA track and ID method is evaluated with a Monte 

Carlo simulation and the performance metric is 

normalized probability of state error.  As detailed in the 

Figures by the true trajectory, the targets 1) start with 

position and velocity, 2) pass by each other at a close 

distance, and 3) finish with a specified direction.  Even 

with a coarse starting position, the tracker was able to 

locate, track, and identify the targets with clutter. 

 

Figure 5 shows the effectiveness of tracking targets using 

the JPDAF when targets are separated by a large distance.  

The separation allows for the determination of a validation 

gate size that associates the correct measurements to 

tracks. 

 

Figure 6 shows one case of many where the tracker gets 

confused with closely spaced moving targets by the 

addition of a third target.  

Figure 7 shows the same case as Figure 6 with 

identification information that helps the tracker better 

associate the true position measurements from clutter.  In 

the case presented the clutter comprised of 5 spurious 

measurements around a target.  Target beliefs increased 

throughout the run as the target was repeatedly identified 

as the same target. 

 

6. Discussion & Conclusions 

Conventional measurement tracking techniques have 

difficulty with data association when position 

measurements are close.  The SBDA algorithm, which 

uses the identification information, helps to associate the 

correct measurement to the correct targets.  In the 

presence of clutter, the novel algorithm utilizes parsimony 

 
 

Figure 6.  Tracking without ID information. 

 

 
Figure 5.  Tracking without ID using JPDAF for 

targets that are separated. 
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for processing.  The SBDA can be utilized in a time-

constrained weak-sensor scenario to get a general target 

location and a positive ID due to the fact that the AND 

function captures positive ID information that can be used 

to augment a data association tracker.  
 

 
Figure 7.  Tracking with ID information. 

 

In a series of simulation experiments, the SBDA 

performed well resulting in a desirable solution for closely 

spaced moving targets, and at a faster rate than 

conventional mutlitarget-multisensor tracking 

methodologies. The faster rate resulted from a reduction in 

the gate size to eliminate clutter. The presented technique 

demonstrates promise for multitarget tracking problems 

and warrants further exploration in problems where 

environmental effects, occlusions, lost sensor data, and 

unknown targets where robust identification information is 

not available. 
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