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Abstract 

A tactical pilot typically experiences difficulty in 
maintaining accurate identification on multiple-
interacting targets in the presence of clutter.  We propose 
a multilevel feature-based association (MFBA) algorithm 
to aid a pilot in a dynamic multi-target environment. We 
investigate MFBA for an air-to-ground scenario in which 
a plane, equipped with a high-range resolution radar 
sensor processes kinematic and target features at 
different levels, and fuses these features to 
simultaneously track and identify targets.       
 

1.  Introduction 

The problem of multitarget tracking and identification 
(ID) is a subset of sensor management, which includes 
selecting sensors, sensor recognition policies, and 
tracking algorithms for a given set of mission 
requirements [1].  For example, in a typical tactical 
aircraft, the onboard sensors are an active radar, an 
electro-optical sensor, and a passive radar sensing device, 
with each sensor having a variety of modes in which it 
can operate and features it can detect. These sensors make 
kinematic and ID measurements to detect, track, and 
classify objects of interest while reducing pilot workload. 
The ultimate objective of the sensor management system 
involves pilot survival and mission success.  In a dynamic 
and uncertain environment, the onboard sensor manager 
must select the correct sensor to ID the correct target at a 
given time. Thus, the sensor manager must control the 
measurement sequencing process for effective tracking as 
well as discern threatening targets.  Techniques such as 
reinforcement and association learning have been applied 
for searching, detection, and identification [2].   

 
Multitarget tracking in the presence of clutter has been 
investigated through the use of data association 
algorithms [3]. Likewise, other multisensor multiplatform 
fusion algorithms focus on identifying targets from 
multiple look sequences of sensor data [4]. The merging 
of these algorithms can be accomplished by investigating 
the similar features between the algorithms.  Track fusion 
uses kinematic features and ID fusion uses target-type 
features. By utilizing the merits of data association in 
multilevel feature fusion, we seek to simultaneously track 
and identify targets.  

 
A few tracking and identification algorithms have been 
proposed [5,6,7].  These approaches, although influential 
in this work, rely on the Bayes’ rule for identification.  A 
limitation of using a Bayesian analysis is that it does not 
capture incomplete knowledge. For instance, there are 
times when unknown targets might be of interest that are 
not known at algorithm initiation. At other times, there are 
unknown number of targets to track. Layne [8] utilizes an 
automatic target recognition (ATR) and tracking filter in a 
multiple model estimator (MME) approach; we seek to 
expand on this idea by allowing for the capability to 
discern unknown relevant targets.  Additionally, by 
incorporating a general theory for features, any 
combination of sensors and targets can be captured, such 
as in biological, manufacturing, and economic scenarios. 

 
This paper develops a multilevel feature-based association 
(MFBA) for simultaneously tracking and identifying 
targets.  The MFBA algorithm leverages the multiple-
pattern data association tracking algorithm [4]. MFBA 
may offer a means to control some aspects of the 
computational burdens experienced by analytical 
optimization techniques while providing an effective 
solution for multitarget tracking and ID in the presence of 
clutter.  Section 2 overviews feature track and ID level 
fusion. Section 3 describes the problem formulation and 
Section 4 details mathematics of the algorithm. Section 5 
presents results and Section 6 draws some conclusions.    
 

2. Intelligent Feature and Track Level Fusion 

The ability to perform track and ID fusion requires 
sensor-processed features from different levels. Like 
multitarget data association algorithms for accurately 
tracking targets in the presence of clutter, we assume that 
detected targets can be tracked from a sequence of center-
of-gravity and pose positional data.  However, for a given 
sensor/target scenario, we assume detected high range 
resolution (HRR) signature features can effectively 
discern target types. Feature-to-target mappings can be 
achieved either through another observer’s experience, 
association learning, or predicted.  By leveraging 
knowledge about target types, fusion algorithms can 
significantly reduce processing time for tracking and 
identifying targets.  In addition, correlating kinematic 
features with signatures will allow for identifying targets 
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at the same time tracking is performed.  MFBA applies to 
multisensor applications for either similar-type multiple-
platform or single-platform different-type sensors, as 

shown in Figure 1. Thus, integration of information can 
take place at either the feature or track level fusion. 
Intelligence in tracking is the ability of an agent to 
discern salient features from a sensor image.  Since 
information available to an observer is restricted to the 
sensed image, it constrains the possible information for 
tracking and identification.  The intelligent approach 
would utilize each sensor for a given perceived outcome. 
The ability of the observer to track and ID targets 
simultaneously includes finding the target center for 
tracking, determining the target pose, and searching the 
neighboring features for discerning salient features to 
associate the features to a specific class of targets.  By 
partitioning kinematic and ID sensor data, feature 
association at different levels can be used for either 
coarse(track) or fine(ID) target analysis.  Additionally, 
decoupling information can be used for a single-platform 
observer to fuse information from a sequence of sensor 
data or for a multiple-platform scenario in which fusing 
is performed from different geometrical positions. 
 
The problem of track level and feature-level fusion has 
characteristic tradeoffs about which the intelligent agent 
must decide.  Situational awareness includes both the 
identification and locality detection of competitors and 
allies. For close targets, it is useful to keep an accurate 
track for any target that threatens survival.  Figure 1 
shows the case in which the forward tank has an 
articulation that threatens the plane flying overhead, but 
not the survival of the second plane. For this situation, 
the overflying plane would want to perform ID, while 
the other platform would perform tracking. Together, the 
multiplatform scenario would insure the survival of both 
planes. Hence, due to a limited set of resources and/or 
processor time, a trade-off exists between the two types 
of fusion.  The intelligent processor performs feature-
association at multiple levels and can either track targets 
at a low resolution or ID targets at a higher resolution. 
 

3.0 Problem Formulation 

Consider Figure 1 as an environment that the two pilots 
are monitoring.  Each pilot with his available platform 
would want either to track or ID targets depending on the 

situation.  Identifying a target is a subset of ATR 
algorithms in which the observer must use the available 
features to discern the object.   Certain features are 
inherently more useful in recognizing a target than 
others.  For instance, identifying a large plane versus a 
small plane would result from an analysis of the wing to 
length ratio.  In this scenario, we use a conventional 
platform HRR sensor which has multiresolution 
distance-independent all-weather capability for the 
MFBA algorithm.  Additionally, HRR can perform either 
in spotlight or stripmap modes for multiple platform 
scenarios as shown in Figure 2. 

By assumption, the aircraft carries a HRR sensor able to 
detect target signatures. Assume that the region in Figure 
2, the 2-D frame, is composed of T targets with f 
features.  For the HRR profile, Figure 3, the features are 
the peak measurements and the distance, d, between the 
peak features.  Dynamic target measurements z are taken 
at time steps k, which include target kinematics and 
identification features z(k) = [xt(k), f1,… fn].  

Any sensor can measure independently of the others, and 
the outcome of each measurement may contain kinematic 
or feature variables indicating any target. The features for 
each sensor are similar, but need to be extracted and 
applied to the separate targets.  The probability density of 
each measurement depends on whether the target is 
actually present or not.  Further assume that a fixed 
number of kinematic and feature measurements will be 
taken at each time interval, where we model the clutter 
composing spurious measurements. A final decision form 
the MFBA algorithm is rendered as to which [x, y] 
measurement is associated with the target-type.  The 
feature-to-target mapping is determined a priori from the 

learned feature recognition of HRR signature and 
unknown targets are tracked but not identified.  
 
The multisensor-multitarget tracking and identification 
problem is to determine which measured kinematic 
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Figure 2. HRR Mode Multiplatform Tradeoff. 
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features should be associated with which ID features in 
order to optimize the probability that targets are tracked 
and identified correctly after z measurements. The 
multilevel feature fusion problem is formulated and 
solved by using concepts from probability data 
association. For the symmetric-target case, the 
"association rule" associates the measurement with the 
highest target probability. Since unknown targets are 
possible, a sub-optimal result occurs when making the 
final decision about asymmetric target types from the 
different perspectives of the observer.  
 
Two feature level fusion methods are implemented.  The 
first, which we call Measurement Tracking, searches 
through all the measurements and probabilistically 
chooses the measurement most likely to be associated 
with the target.  The second method, Feature 
Identification, is a procedure that uses feature 
measurements for believable target IDs to discriminate 
between targets.  By combining these algorithms in the 
MFBA, targets close together can be effectively  
identified and tracked. 
  

4.0 Feature Tracking and Identification 
 
4.1 Tracking Belief Filter (TBF) 
The target state and true measurement are assumed to 
evolve in time according to: 
 

x(k + 1) = F(k) x(k) + v(k)  (1) 
z(k) = H(k)x(k) + w(k) (2) 

 
where v(k) and w(k) are zero-mean mutually independent 
white Gaussian noise sequences with known covariance 
matrices Q(k) and R(k), respectively.  Spurious 
measurements are uniformly distributed in the 
measurement space.  Tracks are assumed initialized at an 
initial state estimate x(0), contain a known number of 
targets determined from the scenario, and have associated 
covariances. 
 
The measurement-to-target association probabilities are 
computed across the targets and these probabilities are 
computed only for the latest set of measurements. The 
conditional probabilities of the joint-target association 
events pertaining to the current time k is defined as θ(k), 
where θjt is the event that measurement j originated from 
target t, j = 1,…, m(k); t = 0, 1,…, Nt, where m(k) is the 
total number of measurements for each time step, k is the 
time of measurements, and Nt is the known number of 
targets.  A validation gate is used for the selection of the 
believable joint events, but not in the evaluation of their 
probabilities.    

 
The Plausible validation matrix Ω = | ωjt | is composed of 
binary elements that indicate if measurement j lies in the 
validation gate of target t.  The index t = 0 stands for 
"none of the targets" and the corresponding column of Ω 

includes all measurements, since each measurement could 
have originated from clutter, false alarm, or the true 
target, or an unknown target. 
 
A joint association event consists of the values in Ω 
corresponding to the associations in θ, 

 

 Ω̂(θ) = | ω̂jt(θ)|  = 
⎩
⎨
⎧ 1  if θjt ∈ θ

0 otherwise
    (3) 

 
A believable association event has 
 i) A single measurement  source:   

 ∑
t = 0

NT

    ω̂jt(θ) = 1   ∀ j (4) 

 ii) At most one measurement originating from a target:  

 δt(θ) =
Δ ∑

j = 1

m

    ω̂jt(θ)   ≤ 1     (5) 

The generation of event matrices, Ω̂, corresponding to 
believable events can be done by scanning Ω and picking 
one unit/ row and  one unit/column except for t = 0. 

 
The binary variable δt(θ) is called the target detection 
indicator since it indicates whether a measurement is 
associated with the target t in event θ, i.e., whether it has 
been detected. 
 
The measurement association indicator 

 τj(θ) =
Δ ∑

t = 1

m

    ω̂jt(θ)   (6) 

indicates measurement j is associated with the target t in 
event θ. 
 
The number of false measurements in event θ is 

 φ(θ) =  ∑
j -1

m

  [ 1 -  τj(θ) ]   (7) 

The joint association event probabilities are, using Bayes' 
Formula: 
 

P{θ(k)|Zk} = P{θ(k)|Z(k),m(k),Zk -1}  

                = 
1
c p[Z(k) | θ(k),m(k),Zk -1] P{θ(k) | m(k)}  

                =  
1
c ∏

j = 1

m(k) - φ(k)

  V {ftt(k) [zj(k)]}τj  (8) 

where c is the normalization constant. 
 
The number of measurement-to-target assignment events 
θ(k) is the number of targets to which a measurement is 
assigned under the same detection event [m(k) - φ].   The 
target indicators δt(θ) are used to select the probabilities 
of detecting and not detecting events under consideration. 

 
A plausible elliptical validation region V with a gate 
threshold, γ, is set up at every sampling time around the 
predicted measurement and is used to select believable  
measurements. Measurements from one target can fall in 
the validation region of the neighboring target and is 
persistent interference. All feature variables that carry 
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information useful for discerning the correct measurement 
from the incorrect ones are assumed to be included in the 
measurement vector. The MFBA approach differs from 
conventional algorithms in how feature measurements are 
used in the estimation of the kinematic state to the correct 
target.  Figure 4 shows the tradeoffs that are determined 
from the resolution level.  The coarsest level uses kinematic 
feature information and is similar to the Probability Data 
Association Filter (PDAF).  When identification features are 
employed, the learned feature which best discriminates 
between targets is called from each platform and fused.  If a 
positive ID has not been performed, the next most 
discriminating feature is called from each sensor.  The 
algorithm terminates the process either after all the features 
have been used or a measurement sequence is updated.  
Thus, the simultaneous decision of tracking and ID is one of 
evidential reasoning where the final decision is an 
association of the correct kinematic measurement to the 
fused set of features which results in the highest believable 
target type.   
 

 
Note, from Figure 4, if only the kinematic feature 
information is used a data association error could result from 
closely spaced measurements in a time constrained decision 
making process.  However, if different features are utilized, 
assuming that the detection of these features are available in 
a timely manner as opposed to continuously sampling at the 
same coarse level, then the ID features can be fused together 
to associate the correct target type with the correct 
measurement.  Thus, simultaneously associating multiple-
level target and kinematic features results in higher belief of 
true measurement-to-target value and reduces the kinematic 
validation region.   

4.2 Multiple Model Tracking Belief Filter 
One of the key links between tracking and identification is 
the ability of the tracking filter to accurately position the 
identification sensor. The HRR data used for the 
implementation of the algorithm requires a link between 

pose information.  Pose information consists of a 
depression angle and an aspect angle.  The depression 
angle is related to the sensor position and aspect angle can 
be determined from the HRR profile.  While Layne [8] 
uses the entire length of the HRR profile as the aspect 
angle, we utilize the distance between the peak features.  
Westercamp and Mitchell [9] have shown that the peak 
features in a HRR map can be used to classify objects. 
 
Another deviation from the multiple model approach is 
that instead of just gathering HRR information, we 
assume that we have multiple targets in the search space, 
much as in the case of a moving target indicator (MTI) 
plot.   In order to determine which measurements are 
plausible, we utilize the belief filtering approach [10] 
which uses evidential belief updates to allow for unknown 
target information.  
 

The Tracking Belief Filter is an intelligent method which 
devotes attention to every believable measurement and 
cycles through measurement features until a target ID is 
reached.  The filter assumes the past is summarized by an 
approximate sufficient statistic - state estimates 
(approximate conditional mean) and covariances for each 
target.   Each measurement 

 

z(k) = [xt(k), f1,… fn]  (9) 
is sequenced as it comes in as depicted in Figure 5, and   
the kinematic state and ID feature variables are separated.  
The algorithm starts by taking the highest level features, 
or those deemed to best discern a target, and uses it to ID 
the first object.  The first feature is always assumed to be 
the kinematic state and available so that tracking can be 
performed at the coarsest resolution from a sequence of 
measurements. If the first fused identification feature, f11, 
identify the target, then the probability update, f11α11⇒ 
T1, is used as a sufficient statistic to identify that object.  
If the object is not discernable, the next feature f12 is used 
with its probability update to determine the belief in the 
first target.  The procedure continues pulling features 
necessary to identify the first object from the multiple 
measurements until the feature best identifies the target,  
Σf11α11…fn1αn1 ⇒ T1. When a belief satisfies a threshold, 
the kinematic information is associated with that target ID 
belief.  The final result is a feature matrix Γ, composed of 
feature-to-target probabilities. When the fused kinematic 
feature information is determined, a weight, β1, from the 
track information is associated with the ID-feature 
information.  If the final believable result is not above 
some desired threshold, this information is stored with 
this target and is put on the queue to see if the target can 
be identified given a process of elimination, thus 
capturing unknown targets.   
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Figure 4. Multitarget- Multilevel feature Tracking. 
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In the case of the TBF, multiple feature models are run for 
each target type known and for a fixed number of possible 
unknown targets.  By using pose, we can match the 
position of the target with the aspect angle of the HRR 
sensor.   The TBF predicts the next feature state, such as 
the aspect angle, and then determines which target is most 
plausible.  Hence the target ID is based on the HRR peak 
feature measurements as well as the aspect angle. The 
aspect angle is determined from the azimuth and elevation 
angles of the sensor. 
 

The feature-based approach extracts features from the HRR 
signature.  The features are arranged into a feature vector, x, 

 

 xk + 1 = Γkxk  + Δkwk (10) 
 

where xk = [f1,..,f k]T, where f1  is the position and f2 … fn 
are ID features,  Γk = diag [Γ1, .., Γn], and w(t) is zero-
mean mutually independent white Gaussian noise 
sequences with known covariances Q(t).  The feature-state 
estimate and covariance propagation over time is: 

 

 x̂k |k-1  =  Γ xk-1|k -1   (11) 

 Pk |k-1  =  Γ Pk-1|k-1 ΓT + Δk-1 Q Δ
T
k-1 (12) 

 

where P is the covariance matrix,  Δ = diag{δ1,...,δn), δ  is 
the priority weight of the feature, and 
Q = diag{Q(f1),..,Q(fn)].   

4.3 Identification Belief Filter 
The ID belief filter simulates the confirmation process 
people perform by predicting hypotheses in a frame of 
discernment, Θ. The frame of discernment consists of a 
collection of matched features, Θ = ∪{f2, ..,fn}.  Only a 
subset of the entire combinations of features is possible. 
Thus, the belief set is a modification of Shafer’s belief 
functions, explained in [10], to only include a priori 
learned set of feature combinations. The probabilistic 
fusion of extracted features is performed using 
Dempster’s rule.  Dempster’s rule is modified to assign a 
priority, α, to salient features and discounted over time, 
γ, to reflect a change in feature saliency from previous 

images.  A belief in a target hypothesis is 
propagated over time or a sequence of HRR 
signatures: 

BTk =   
Hypi(α 2f2, .., αnfn)*γ

1 - C(∑
i =1

 n

   Hypi(α2f2,.., αnfn))
   (13) 

 
where C is the cognitive dissonance between 
mismatched features, T is the target type, i is 
the a priori hypothesis of feature combinations, 
and k is time.  When the accumulated belief is 
greater than a confidence factor, the 
confirmation process is terminated and a 
decision is rendered for the target type. 

The target-belief values are in a measurement matrix: 

 zk = [ Belk ] xk  (14) 
 

where the propagation of the belief is performed much 
like a Kalman filter: 

 ek = zk -  ẑk|k-1  (15) 

 wk = Pk|k-1 [Belk]T [Belk Pk|k-1 BelTk + R] -1 (16) 
 

The update equations are: 
 

 Pk|k = Pk|k-1 - wk Belk Pk|k-1 (17) 
 xk|k = xk|k-1 + wk ek 
 

These generalized equations propagate belief-filtered, 
predicted feature measurements in time. 

4.4 Fused Track and ID State Estimation 
Assuming the targets conditioned on the past observations 
are mutually independent, the decoupled state estimation 
(filtering) of the marginal association probabilities, 
which are obtained from the joint probabilities, is 
obtained by summing over all joint events in which the 
marginal event of interest occurs. The conditional 
probability of the event (the association probability) is: 

 

    βjt =
Δ P{θjt(k)|Zk}   

       = ∑
θ

 

  P{θ|Zk}ω̂ jt(θ) = ∑
θ:θjt∈θ

 

  P{θ|Zk}   (18) 

 

The algorithm decomposes the estimation with respect to the 
origin of each element of the latest set of validated 
measurements. Using the total probability theorem, with 
respect to the above events, the conditional mean of the state 
at time k can be written as: 

 

 x̂(k|k) = ∑
i = 0

 m(k)

  x̂i(k|k) βi(k)  (19) 
 

where x(k|k) is the update state conditioned on the event 
that the ith validated measurement is correct. 
 
The state estimate, conditioned on measurement i being 
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Figure 5. Feature-Recognition Tracking Model. 
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correct, is: 
 

   x̂i(k|k) = x̂i(k|k - 1) + W(k)νi(k)    (20)  

   νi(k)  = zi(k) - ẑ(k|k - 1)  (21) 

   W(k)  = P(k|k - 1)H(k)TS(k) -1  (22) 
 
The combined state update equation, combined innovation, 
and covariance associated with the state are: 
 

  x̂(k|k) = x̂(k|k - 1) + W(k)ν(k)  (23) 

  ν(k) = ∑
i = 1

 m(k)

  βi(k) νi(k)  (24) 

  P(k|k) = βo(k)P(k|k-1) + [1-βo(k)]Pc(k|k) (25) 
 

5. Initial Results 

The MFBA track and ID method is evaluated with a 
Monte Carlo simulation and the performance metric is 
normalized probability of state error.  As detailed in the 
Figures by the true trajectory, the targets 1) start with 
position and velocity, 2) pass by each other at a close 
distance, and 3) finish with a specified direction. 
 

6. Discussion & Conclusions 

Conventional measurement tracking techniques have 
difficulty in identifying targets when the measurement 
data is close together.  The MFBA algorithm, which uses 
the feature measurements, identifies the correct targets 
and assigns measurements to the targets.  In the presence 
of clutter, the novel algorithm warrants useful attention in 

that it utilizes available processing capabilities of the 
sensor.  If at first it does not succeed, it further focuses its 
attention on better discerning characteristics of the target 
as opposed to repeated unreliable measurements.  By 
cycling through different feature levels, the algorithm 
shows promise for multiplatform-multisensor life-
threatening situations in which survivability is required 
for mission completion.  Additionally, when the situation 
is not life-threatening, then either track or ID modes can 
be used to aid a pilot.  The MFBA can be utilized in a 
time-constrained scenario to get a general target location 
and a positive ID to avoid threatening and/or track 
numerous approaching targets.  

 
This research included training a belief classifier using the 
association learning for feature recognition to guide an 

imperfect sensor or a perfect sensor in the presence of 
clutter to identify targets in a region. In a series of 
simulation experiments, the MFBA performed well 
resulting in a desirable solution, and at a faster rate than 
conventional mutlitarget-multisensor tracking 
methodologies.  The presented technique demonstrates 
promise for multitarget tracking problems and warrants 
further exploration in problems where environmental 
effects, occlusions, lost sensor data, and unknown targets 
can be modeled that are not readily handled by current 
tracking algorithms. 
 

Acknowledgments 
 

The first author would like to thank the Math and Geosciences 
Directorate of AFOSR for a grant 2312R1 that supported this research.  
Additionally, we would like to thank Jeff Layne, John Westercamp, and 
Rick Mitchell for their helpful comments. 

References 
[1] R. Popoli, “The Sensor Management Imperative”, Chapter 10 in 

Multitarget-Multisensor Tracking: Advanced Applications, Vol. II, 
Y. Bar-Shalom, Ed., Artech House, 1992. 

[2]  E. Blasch and R. Malhotra, “Learning Sensor Detection Policies,” 
Pro. of IEEE NAECON, Dayton, OH, July 1997, pp. 769-776. 

[3] Y. Bar-Shalom and X. Li, Mutitarget-Multisensor Tracking: 
Principles and Techniques, YBS, New York, 1995. 

[4] Z. Ding and L. Hong, “Decoupling probabilistic data association 
algorithm for multiplatform multisensor tracking,” Optical 
Engineering, ISSN 0091-3286, Vol. 37, No. 2, Feb. 1998. 

[5] K. Kastella. "Joint multitarget probabilities for detection and 
tracking," SPIE AeroSense '97, April 21-25, 1997. 

[6] M. Efe and D. Atherton, “A Tracking Algorithm for both Highly 
Maneuvering and Non-maneuvering Targets,” CDC ’96, San Diego, 
CA, 1997, pg. 3150 – 3155. 

[7] E. Libby, “Application of sequence comparison methods to 
multisensor data fusion and target recognition,” Ph.D. Dissertation, 
AFIT, June 1993. 

[8] J. Layne, “Automatic Target Recognition and Tracking Filter,” SPIE 
AeroSense – Small Targets, April 1998. 

[9] R. Mitchell and J. Westerkamp, “Statistical Feature Based Target 
Recognition,” NAECON, 1998, pp. 111-118. 

[10] E. Blasch and J. Gainey, “Feature Based Biological Sensor Fusion,” 
Intl. Conference on Info. Fusion, 1998, pp. 702-709. 

 

2000 2500 3000 3500 4000 4500 5000
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1
x 10

4

X 

Y

Belief Tracking and ID FILTER

BMP2-1

BMP2-3

T72

2000 2500 3000 3500 4000 4500 5000
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1
x 10

4

X 

Y

Belief Tracking FILTER

BMP2-1

BMP2-3

T72

     Incorrect 
Track Update

Figure 7.  Measurement Tracking. 


