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ABSTRACT 
The 1999 Joint Director of Labs (JDL) revised model incorporates five levels for fusion methodologies including level 0 for 
preprocessing, level 1 for object refinement, level 2 for situation refinement, level 3 for threat refinement, and level 4 for 
process refinement.  The model was developed to define the fusion process. However, the model is only for automatic 
processing of a machine and does not account for human processing.  Typically, a fusion architecture supports a user and 
thus, we propose a Level 5 “User refinement” to delineate the human from the machine in the process refinement. Typical 
“human in the loop” models do not deal with a machine fusion process, but only present the information to the human on a 
display.  We seek to address issues for designing a fusion system which supports a user: trust, workload, attention and 
situation awareness.  In this paper, we overview the need for a Level 5, the issues concerning the human for realizable 
fusion architectures, and examples where the human is instrumental in the fusion process such as group tracking.  
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1. INTRODUCTION 
The fusion and tracking community has developed refined mathematical algorithms from which to track targets based on 
sensed positional measurement information [1].  Human visual tracking [2] incorporates the inherent process of motion 
detection and subsequently sequencing measurement information. The integration of these methods is the fusion of the 
human motion processing of observed target identity (ID) and mathematical-machine positional information[3]. Tracking 
ultimately is performed for human needs, whether it be for surveillance applications or object assessment (i.e. air traffic 
control).  Industrial systems have sometimes employed fusion technology, however, the goal was to present target 
localization as opposed to developing a strategy for man-machine fusion-tracking interactions.  Limited research has been 
performed in the area of incorporating a human into the standard fusion models.  Here, we see the human as an active 
component in the fusion process to optimize sensors to best locate and ID targets. 
  
There are many sensor fusion architectures and some have evolved with time. Machines are quick at data processing and it 
is time for higher level fusion issues to be addressed to incorporate the human in the loop.  We are interested in breaking up 
the high-level sensor management task into two areas – one for the computer and one for the human. The human is 
interested in many aspects that can not be programmed into the computer – such as online strategies dealing with 
measurement process uncertainties and wide area surveillance.  Humans are excellent in monitoring and controlling the 
fusion process.  In the future, one could argue that the human and the fusion system might be able to interact in an adaptive 
way, however a new fusion paradigm would be needed to leverage the human’s intelligent reasoning skills [3].  The human 
brain, with the prefrontal cortex performing higher level reasoning and attentional functions, can work to control the fusion 
process to insure that the correct associations are performed by the machine. 
 
Section 2 overviews fusion and user models for human-machine interaction (HMI). Section 3 overviews the JDL-user model 
that incorporates Level 5 User Refinement. Section 4 addresses issues of situation awareness, attention, workload, and trust 
needed in Level 5. Section 5 presents simulated results.  Section 6 draws conclusions and ongoing efforts. 
 

2. HUMAN-MACHINE FUSION  
Information fusion exists in many forms, such as integrating audio and visual data, plans, or surveillance requirements. It is 
important to remember that the goal of any model is to extend the sensing capabilities of the human to prosecute his or her 
environment. To effectively input, fuse, and output actions, models help to illustrate these functions.  
 
2.1 Information Fusion Models 
Two models that are fusion-focused are the Data-Feature-Decision (DFD) [4] model and the traditional Joint Director’s of 
Labs (JDL) model [5], shown in Figure 1 and Figure 2 respectively.  Dasarathy introduced the DFD model to guide a 
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machine to make decisions based on the data. The JDL model consists of five modules with a human computer interface. 
While the model has been the standard for military research and fusion discussion, it needs to be adapted to reflect the 
importance of the human for information exploitation.  The exploitation of information includes control, decision, and 
action.  In the revised JDL model, it can be stated that the Level 4 process refinement might include both the user and sensor 
control functions as feedback for refining the fusion process.  
 

 
The Ominbus model [4], 
shown in Figure 3, is an 
extension of the OODA 
control loop (sometimes 
referred to as the Boyd 
control loop) as shown in 
Figure 4.  In the case of the 
OODA and the Omnibus 
model, the machine is central 
to the model and is based on a 
human reasoning strategy.  
 
 
2.2. User Models 
The Human in the Loop 
(HIL) of a semi-automated system must be given adequate 
situation awareness (SA). According to a pioneer and continued 
leader in the SA literature, Endsley stated that "Situation 
awareness is the perception of the elements in the environment 
within a volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future.” [6, 
7, 8]. This now-classic model translates into 3 levels: 
 

• Level 1 SA - Perception of elements in the environment.  
• Level 2 SA - Comprehension of the current situation  
• Level 3 SA - Projection of future states  
 

Operators of dynamic systems use their situation awareness in 
determining their actions.  To optimize decision making, the SA 
provided by a system should be as precise as possible as to the 
objects in the environment (Level 1 SA). A situation awareness 
approach should  present a fused representation of the data (Level 2 SA) and provide support for the operator's projection 
needs (Level 3 SA) in order to facilitate operator's goals.  From the SA model presented in Figure 5, workload is a key 
component of the model that affects not only SA, but also the decision and the action of the user.  
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Figure 3. Omnibus Model.   Figure 4. OODA Loop. 
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Figure 5. Endsley’s Situation Awareness Model 
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Research areas concerned with SA include 1) Military  (e.g., UAVs, UCAVs, UGVs), 2) Aviation (ATC, Pilots), 3) Civil – 
Fire, Weather Surveillance, Decision Aiding, Response, 4)  Medicine – Diagnosis, Surgery, Prostheses, 5) Industrial – 
Training, Repairs, 6) Educational – Distance Education, Disability Support, and 7) Robotics. SA is based on two 
perspectives: a) micro, which can be individual or tactical, and b) macro, which can be theater or strategic. Both levels of 
Situation Awareness are critical in the design and process of achieving Level 5 User Refinement capabilities in systems 
where the supervisory control by a HIL needs to facilitate decision making. [9] Fusion models must incorporate Workload, 
Attention, and Trust to aid SA in research, design and implementation. 
 
2.3 User Designed Fusion Models 
Two of the current user fusion models are the perceptual and the 
Neurophysiology models. An example of the perceptual 
reasoning machine (PRM) by Kadar [10] is shown in Figure 6.  
The model incorporates the prior information that the user has to 
help guide the prediction of the system.  Current human 
knowledge can estimate the situation.   Kadar uses the model to 
address the information gathering for actions pertinent to the user. 
 
While perception is a psychological construct, we can also 
address the user needs by addressing the biology of the human in 
the fusion process. Human fusion of several sensor modalities is 
expressed in the Neurophysiological Information Fusion (NIF) 
architecture.  The sensor modalities considered include visual, 
auditory, and somatosensory to locate a target.  The visual system 
is composed of the eyes, the thalamic, the superior colliculus, and the primary visual cortex.  When a person is “searching” 
a region of space, he is looking for objects or 
events.  To anticipate the location of the object, 
the person predicts what the target looks like 
and maps that image prediction onto a 
consistent, stable model of his environment.  
After an object is detected, (i.e.  listening for a 
threat warning) a cue guides a person to look 
for the target amongst objects in the common 
operation picture (COP).  The auditory system 
can cue the visual system to the general target 
location, but where and when should the visual 
system start looking?  A higher-level cognitive 
function of extraction is needed to associate 
information.  Using a feature-based extraction 
approach from the cued visual image is 
essential to the model.  To further combine 
biological, perceptual, and machine-fusion, we 
explore elements of “User Refinement”. 
 
  

3. THE JDL-U SENSOR FUSION MODEL 
The JDL-U model activities are: 
 
Level 0 − Sub-Object Data Assessment: estimation and prediction of signal/object observable states on the basis of 

pixel/signal level data association (e.g. information systems collections); 
Level 1 − Object Assessment:  estimation and prediction of entity states on the basis of observation-to-track association, 

continuous state estimation and discrete state estimation (e.g.  data processing);  
Level 2 − Situation Assessment:  estimation and prediction of relations among entities, to include force structure and force 

relations, communications, etc. (e.g. information processing, FDP, FL); 

Figure 6. Perceptual Reasoning [Kadar SPIE02]. 
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Figure 7. Neurophysiological Information Fusion (NIF)  
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Level 3 − Impact Assessment: estimation and prediction of effects on situations of planned or estimated actions by the 
participants; to include interactions between action plans of multiple players (e.g. assessing threat actions to planned 
actions and mission requirements, DM, PE); 

Level 4 − Process Refinement (an element of 
Resource Management): adaptive data acquisition 
and processing to support mission objectives (e.g. 
sensor management and information systems 
dissemination, IO, C2). 

Level 5 − User Refinement (an element of Knowledge 
Management): adaptive determination of who 
queries information and who has access to 
information. (e.g. information operations) and 
adaptive data retrieved and displayed to support 
cognitive decision making and actions (e.g. altering 
the sensor display). 

 
The key to the fusion process is data association.  
Difficulties of using data association fusion are that: 
sensor data can be unreliable, the transfer process may 
corrupt data, or inappropriate information fusion 
actions may occur.  By assessing the data (level 0 – 1) 
with information (level 2 and 3), sensor management 
and user refinement (level 4 and 5) can correct for these fusion errors.   
 
Process refinement controls information flow.  User refinement guides data 
collection, region of coverage, situation and threat assessment as well as 
process refinement of sensor selections. While each level needs fused 
information from lower levels, the refinement of fused information is a 
function of the user. Two important issues are control of the information and 
the planning of actions. There are many issues related to centralized and 
distributed control such as team management and individual survivability.  For 
example, an Army Tactical Operational Center (TOC) display, shown in Figure 
9, might be globally distributed, but centralized for a single commander for 
local operations. [see 11 for another example]. Thus, the information displayed 
on a human computer interface should not only reflect the information received 
from lower levels, but also afford analysis and distribution of commander 
actions, directives, and missions.  Once actions are taken, new observable data 
should be presented as a operational feedback information.  Likewise, the 
analysis should include the local and global operational changes and the 
confidence of new information.  Finally, execution should include updates to the distributed system of orders, plans, and 
actions to people carrying out mission directives.  Thus, Level 4, it is not the fusing of signature, image, and track 
intelligence data, but that of fusion of decision intelligence (DECINT) information for functionality. 
 
DECINT information is a globally and locally refined assessment of fused observational information.  DECINT is the 
information for which a user can act on.  Additionally, HUMINT data can be gathered from other people to determine what 
information to collect, analyze, and distribute to others. One way to facilitate the receiving, analyzing, and distribution of 
actions is that of the observe, orient, decide, and act (OODA) loop.  The OODA loop requires the display of information for 
functional cognitive decision-making.  In this case, the display of information should orient a person as in determining the 
situation based on the observed information (i.e. situation assessment). These actions need to be assessed from the user 
ability to deploy his resources against the resources, constraints, and opportunities of the environment.   
 
The processing of information can be labeled as action intelligence (ACTINT) information because an assessment of 
possible/plausible actions needs to be considered. Thus, the goal of any fusion system is to provide the user a set of refined 
information for functional action.  Taken together, the fusion system is actually a functional sensor for the user, whereas the 
traditional fusion models are just an observational sensor. The user refinement block not only is the determination of who 

Figure 8. JDL-User Model 

 
Figure 9. Tactical Operation Center. 
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wants the information and if they can refine the information, but how they process the  information.  Bottom-up processing 
of information can take the form of physical sensed quantities that support the higher-level functions. To include the 
automation as well as the user, it is important to view the user through an interface which the user can interact with the 
system (i.e. sensors). In this case, the user can query necessary information to make a decision while the automated system 
can work in the background to update the changing environment.  Additionally, the functional fusion system is concerned 
with the entire situation while a user is typically interested in only a subsection of the environment.   The computer has to 
try many combinations, but the human is adapt to locating the objects using sensor fusion.   
 
Target ID and localization information is the desired result of either real or perceived data from a time and space 
representation.  The difficulty with presenting the complete set of real data is the shear amount available.  For example,  A 
person monitoring many region of interest (ROI)s, waits for some event or threat to come into the sensor domain.  In 
continuous collection modes, most sensor data is entirely useless.  Useful data occurs when a sensed event interrupts the 
monitoring system and initiates a threat update.  Decision-makers only need a subset of the entire data to perform successful 
SA and impact assessment.  More importantly the user needs a time-event update on the target of interest.  Thus, data 
reduction must be performed.  The advantage of reducing the incoming data can especially be realized by using a fusion 
strategy over time as well as space.  Target data can be fused into a single COP for enhanced SA.    
 
An inherent difficulty resides in the fusion of only two forms of data.  If one sensor perceives the correct target and the other 
does not, there is a conflict.  Sensor conflicts increase the cognitive workload that must be reduced.  However, if time, 
space, and spectral event fusion from different sensors, conflicts can be resolved within an emergent process to allow for 
better decisions over time.  The strategy is to employ multiple sensors from multiple perspectives as shown in the proposed 
NIF model which characterizes the Level 5 user refinement system in the JDL-U model.  Additionally, the HCI can be used 
to give the user a global and local SA to guide attention and reduce workload.  
 

4. LEVEL 5 – USER REFINEMENT ISSUES 
4.1 Workload 
Muir and Moray, 1996 [12], observed that “A need to understand the interaction between human operators and automation 
has been created by the arrival of complex, dynamic, intelligent automation.” Workload of the User was a different issue in 
automated systems, and not well described or measured. Endsley and colleagues present novel taxonomies and review the 
literature for Levels of Automation (LOA). [13] When considering workload components and impacts upon outcome in 
semi-automated systems, the appropriate LOA for the mission of the system must be experimentally researched and 
subsequently designed into the HIL system. LOA run the gamut, regardless of which LOA model is adopted, from manual 
(human) control to fully automated (no HIL) systems. 
 
Workload measures and analysis becomes critically important as it is a confounder in the relationships of the other attention 
factors upon human performance. Current widely used workload measures in military, especially flight, applications include 
the objective SAGAT battery [6, 8] and both the SART inventory [14] or the NASA-TLX (Task Load Index) [15] for 
subjective measures of workload. Training, or the novice or expert status of the HIL with respect to the automation, must be 
taken into account, as it affects objective and subjective measures of 
workload. Subjective measures of workload are strongly correlated 
with perceived success of decision making. 
 
4.2 Attention 
Any consideration of Level 5 User Refinement must incorporate 
known human factors of attention and workload upon SA and 
decision making. Elements of attention which are relevant include 
multimodal informational inputs. Primary modalities are visual and 
auditory systems, but tactile/haptic sensory channels are gaining 
research and design focus. Endsley [16] outlines key factors 
impinging upon attention include  

- syntax, semantics, and clutter of presented information from 
prior system Levels,  

- novice vs. expert status with the system,  
- visual search strategies, auditory identification strategies, and 
- training with respect to efficiency and efficacy of strategies 

 

Figure 10. Endsley’s Attention Model. 
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Theories of attention modeling that are relevant for SA include mental modeling and situational modeling, as shown in 
Figure 10. Mental modeling addresses the memory available to the human and processes for employing it.  Typically, three 
forms of memory are discussed: short, working, and long-term memory.   Since the human can only process a subset of the 
information available (i.e. 7 items at a time), the presentation of information to the human has to account for the amount that 
can be processed by working memory, and what types of search, salience recognition, and processing strategies are involved 
in the mission.   Endsley outlines a key long-term memory construct [16] which includes (a) episodic memory, pertaining 
to object-time-location data from self-referent episodes (b) semantic networks, pertaining to the conceptual meaning of 
data and the relationship links or rules that the user accords the data, and (c) schema, which more broadly encompasses 
general knowledge, organized into structures like frames, plans, or scripts. [17]  
 
Another construct of memory Endsley outlines [16] delineates mental vs. situational models. A mental model [18] is a 
mechanism whereby humans generate descriptions of purpose, explanations of system functions from observed system 
states, and predictions of future states. Another way to describe mental models is a complex schema that are plans of 
actions. A situational model [19] is a schemata depicting the current state of the system model Rasmussen [20] describes a 
situational model as a world model in his skills, rules, and knowledge model. A model of the current situation model can be 
viewed as a schema in memory that activates associated goals or scripts. Endsley notes that schema and mental models are 
developed with experience for a given environment and task. Initially, a human is a novice having only a vague idea of 
system components and rough heuristics to employ. With experience, recurrent situational components, associations, and 
causal relationships will develop such that a person becomes an expert.  
 
These cognitive models are a critical starting point for the automation designer in overcoming working memory limitations 
by utilizing strengths in long term memory to assist short-term tasks and multi-modal search strategies. The next important 
point for automation designers are the classic theories of attention, especially in the visual domain. Five key theories can be 
summarized as follows [21 – 24]: 
 

• Early Selection Theory (or Broadbent’s Filter Theory) - Early filtering of stimuli, generally by physical dimensions of 
signal input, results in one component ‘message’ being selected and propagated to downstream processing for 
efficiency. Other ‘messages’ are lost in this early filter. Efficiency takes priority over validity and mitigating error. 

• Attenuation Theory - ‘Messages’ are weighted with priority given to one message over the others; the former receives 
full processing (if this can be defined and analyzed) while latter receive only partial processing. 

• Late Selection Theory - Efficiency is sacrificed for validity and reduced error: All ‘messages’, attended or not, 
undergo semantic analysis and receive downstream processing, after which the key ‘message’ is determined since only 
one response can be made. 

• Object Based Theory- Rather than relying on physical parameters of input, a visual scene is dissected into distinct 
perceptual ‘objects’. Leaving aside the selection of the salient ‘message’, the focus here is upon implications of how the 
scene is processed: parallel processing is theorized for object features while serial processing is theorized between 
objects. This theory informs research on guided search strategies within a field of view or a display. 

• Space-based theory- Again leaving aside the selection of the salient information or ‘message’ of input data, the 
“spotlight” approach concerns the narrow field of view upon a scene, within which the visual attention is focused.   
Parallel search (at the same time) might be a target and location whereas serially (one at a time) includes searching for 
multiple targets.  Everything within the spot can be processed in parallel; things outside the spot, or peripheral vision, 
are processed serially. 

 
4.3 Control of Visual Attention  
Control can be top-down (goal driven) or bottom-up (stimulus 
driven). [21, 22] Goal driven includes shifts of attention to spatial 
locations whereas stimulus driven is attentional capture by spatial 
cues, visual salience, and by abrupt visual onsets.  The user employs 
strategies and intentions (i.e. looking for a target). When a person is 
searching for a featural target, then irrelevant targets will capture 
attention.  However, when a person is searching for a more complex 
object, irrelevant featural targets will not capture attention. Stimulus 
driven attention is controlled by some salient attribute of the image 
that is not necessarily relevant to the user’s perceptual goals (i.e. 
selecting a moving target because it “pops out”.) When a person 
directs attention to a spatial location in advance of a display, then visual events that would otherwise capture attention will 

Basic Features in Visual Search 
 
 Motion- Easy to find a moving stimulus among 

stationary distractors. 
Color – Can be done through transformations 
Size – How large the target is 
Number - Set size – Miller’s Magic Number 
Resolution – How much acuity the user has 
Time – Latency of data can confuse the user 
Pictorial depth cues 3D appearance of stimuli can 

make the search more efficient.  
Stereoscopic depth - Efficient search is possible when 

the target item lies at one depth and the distractors 
lie at another.
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generally fail to do so.  Stimulus driven control is both faster and more potent than goal driven attentional control due to the 
decision process that is required in goal-driven control.  
 
Limitations of human attention which the automation designer must keep in mind include: 

• Perceptual Processing Limitations – Increased perceived difficulty attending to more things at one time.   
• Focus of Attention - Impact of the situation on the user in directing the attention and keeping it focused. 
• Central Processing Limitations – Cognitive processes may be limited in number which can occur at a time. 
• Memory – Long, Working, Short - relationship between attention, working memory, search, short-term retention. 
• Modes of Attention - Top-down or Bottom-up  
 

4.4 Guided Search to control attention 
Factors to consider when designing presentation from Level 4 to Level 5 include redundancy of information already 
monitored during passive supervisory control. It may be critical to avoid cluttering the information display when switching 
from passive monitoring to active open-loop decision-making Level 5 activities, since time is usually of the essence in 
closing the loop on the Level 5 user decision and returning the system to automatic control.  
 
Semantics and Syntax of Information presentation: The syntax, or form, of the information presented to Level 5 should 
accommodate known human factors issues to expedite decision making and lead to best-case true-successful decisions more 
often than false-failure decisions based upon incomplete or confusing information presentation. Semantics, or content and 
context, of the information is also important to presentation. False-failures can be defined as decision failures (with respect 
to desired outcome) not from human decision making failure, but from arriving at the correct decisions with respect to  
faulty information which leads to an undesired or failed outcome. In other words, false-failures would not be the fault of the 
HIL, but of faulty system design in how information necessary for the decision was presented to the HIL. 
 
Visual search strategies are employed in HIL monitoring of any Group Tracking activity, which indicates key human factors 
such as visual memory load, visual processing workload, and visual search difficulty for a Group Tracking exercise. These 
factors also must be incorporated into the design and modeling of Level 5 User Refinement.  For instance, visual search 
strategies are trainable in part, and may generalize across different tasks, different locations within the visual field, and 
across eyes [25]. It is also proposed that visual working memory usage does not negatively impact visual search, except 
perhaps a slight latency. [26] These factors in visual and other modalities must be researched and accounted for in particular 
implementations of presentation of fused sensor data for time-critical decision making. The LOA selected will depend on 
the nature of the interactions of the HIL attention factors with the automation. Finally, training of the HIL, or the novice 
status or expert status of the HIL, must be taken into consideration for both multi-modal attention parameters.  
 
4.5 Trust in Automation 
Several theories and working models of trust in automation for the HIL have been proposed and incorporated into both 
research and design. Information which is presented for Decision-Aiding to the HIL is not uniformly trusted and 
incorporated into SA. Rempel, in 1985, proposed three increasing levels, or ‘stages of trust’, modeled on human-human 
interactions: Predictability, Dependability, and Faith. Participants progress through these stages over time in a 
relationship. The same was anticipated in human-automation interactions, either via training or experience. The main idea is 
that as trust develops, the HIL will make decisions based upon the trust that the system will continue to behave in new 
situations as it has demonstrated in the past. 
 
Trust issues in automation have been characterized and researched by Muir and Moyer. “The human operator’s role in 
today’s highly automated systems is to supervise the automation and to intervene to take manual control when necessary. 
An important determinant of operators’ choice of manual or automatic control may be their degree of trust in the 
automation. The model of human trust was developed by taking models of trust between people as a starting point and 
extending them to the human machine relationship.” [27] 
 
Another construct of trust related to automation, outlined by Barber, 1983, and reviewed by Endsley, outlines the following: 

• Persistence – an expectation of constancy and predictability. 
• Technical competence – Expert knowledge, Technical facility, Routine performance 
• Fiduciary responsibility – Expectation that the automation will meet its design-based criteria for performance in 

domains where the machine has superior knowledge, authority, and/or power. 
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Sheridan [24] has written prolifically on automation and supervisory control. A review of this body of work is suggested to 
outline concepts of reliability, robustness, familiarity, understandability, explication of intention, usefulness, and 
dependence of automation to the user. Muir & Moray [12] built upon Rempel’s stages and postulated that  
 

Trust = Predictability + Dependability + Faith + Competence + Responsibility + Reliability 
 
Muir and Moray [12] further defined the construct of Distrust: (1) Can be caused by operator feeling that the automation is 
undependable, unreliable, unpredictable, etc. and (2) Set of dimensions related to automation failures, which may cause 
distrust in automated systems (Location of failure, Causes of failure or corruption, Time patterns of failure). 
 
A tabular summary below, adapted below from Muir and Moyer [12], depicts the quadrant of trust and distrust behaviors 
with respect to good or poor quality of the automation. Basically, if the outcome of a wrong decision to trust the automation 
is worse than the outcome of a wrong decision to not trust the automation, then it is critical to present the user with enough 
training to know when to trust the automation.  
 
Table 1. Trust, Distrust, and Mistrust, adapted from Muir and Moray 1996 [12] 

Operator’s trust & allocation of function Quality of the automation 
‘Good’                      ‘Poor’ 

Trusts and uses the automation Appropriate Trust (optimize system 
performance) 

False Trust (risk automated 
disaster) 

Distrusts and rejects the automation False Distrust (lose benefits of 
automation, inc. workload) 

Appropriate Distrust (optimize 
system performance) 

 
As noted earlier regarding attention, modeling systems for SA to support successful 
decision making must take into account the mental processing of information. Trust 
[28-30]  in the automation clearly impacts the mental processing model for 
decisions, and this impact changes over time and experience with the automation. 
Therefore, dynamic models must be devised to account for this aspect of the HIL. 
For the Human in the Loop to refine the assessment for final decision that is passed 
up from Level 4 in an open feedback loop, the user must have trust in the 
automation regarding the validity and reliability of the information presented.  
 
Note that at the macro level, supervisory control takes the individual operator fields 
of view and combines them into a battlefield or strategic theater view. Taking over 
from Level 4 to a Level 5 User Refinement means either assuming manual control of an individual remote sensor, tactician, 
or vehicle from the automated system. Situation awareness at both micro and macro levels will be necessary. Therefore the 
data and information processing algorithms must be able to be decoupled from the automated global or strategic synthesis 
from Level 0 through Level 4, such that individual system components can be isolated for the Level 5 User. Information 
fusion at the lower levels must be logged and state maintained of key variables to permit the necessary decoupling of fused 
information for precision decision override by the HIL at critical points in a supervisory scenario. 
 
Adequate and precise training and design iterations to present the 
information successfully in both fused and decoupled paradigms will require 
extensive testing to achieve good situation awareness for the HIL. 
 

5. USER REFINEMENT FOR GROUP TRACKING 
Group tracking is the ability to prosecute a set of targets in the environment.  
Such issues as occlusions and relations among targets are key attributes 
which make the workload and attention for the user different than a single 
target tracking problem.  
 
5.1 Group Definition 
We define a group as a collection of targets that are spatially and temporally 
similar, move together, and have the same allegiance.  For the case of spatial similarity, we use the validation region of a 

User Trust Issues 
 
Confidence – target ID correct 
Security – that impacts assessed 
Integrity – only show what know 
Dependability - timely 
Reliable - accurate 
Trust – ability to control 
Familiar – practice and training 
Consistent - Reliable 
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tracking system to define where the targets occupy similar space. The temporally similar targets are cases where the group 
of targets are near to each other in the same time instant.  Targets that move together can be defined as a group by direction 
and speed. We use past information to determine the movement history. Finally, the allegiance of the targets relies on the 
identity of the targets within the group.  In the case that similar groups join as a single unit force, the group detector assumes 
targets that are of the same allegiance and movement. Likewise, targets which are spatiotemporally dissimilar are split into 
separate groups. 

To reduce the workload to the human, we use the fusion system to 
group targets using a belief measurement. The belief in the target ID is 
related to the group, allegiance, object-type, and location information.  
For the case that a sensor is cued to observe the object, it’s identity is 
calculated through beliefs of the object type which is determined from 
an automatic target recognition (ATR) algorithm from the fusion of 
various sensors or the trust the human has in the display. To update 
the confidence in the Group ID, we include various definitions of 
groups as shown in Table 2. 
 
The definitions for group tracking follow from the location, 
movement, target attributes, and the group allegiance.  One difficulty 
arises if the members of different groups include targets of the same 
type and allegiance which merge, split, or cross.  For a scenario in 
which similar target types can be members of multiple groups, we use 
human user refinement for feedback of kinematic information to 
determine which of the same target types belong to which groups. To 
accommodate crossing groups, we delay the merging decision until 
sufficient time has been acknowledged to determine which targets 
belong to which groups based on a movement history.  In this case, 
human information helps determine group identity. Table 3 shows the 
benefits of group tracking. 
 
5.2 Group Tracking with User Refinement 
In our study of group tracking with a user, we first started with the raw tracks.  By investigating the display, we incorporated 
1) directing attention, 2) reducing the workload, and 3) improving trust.  In Figure 11, the raw tracks are presented.  At first 
it was difficult to discern tracks.   To direct attention, we included road networks which also increased trust, as shown in 
Figure 12   Second, we use color and different lines that reduced the workload.  Finally, we looked at displaying regions of 
interest to facilitate understanding the threat and directing attention to nearer targets (shown in Figure 13).  

Designing the tracking algorithms with the goal of Level 5 User Refinement requires determining the severity of trust 
outcome failures, and mitigating these. Therefore, the issues such as reliability of the system and validity of the information 
presented by the system are accounted for in modeling and design of Level 5 interactions regarding achieving appropriate 
trust of the HIL for the system. Finally, training of the HIL is an ongoing necessity to maximize the effect of the User 
Refinement upon the tracking model. 

Table 3: Benefits / Attributes of Group Tracking 
Attribute  Benefit 
 

 Speed  - Splitting, termination of groups 
 Direction - Crossing groups separation 
 Spatial  - Merging , initiation of groups 
 ID  - Allegiance determination  

- Update occluded targets 
- Improved track maintenance 
- Increase group ID accuracy 

Table 2: Group Definitions: 
Attribute Definition of measurement 
 

Spatial - Location (i.e. clustering) 
Temporal  - Historical (i.e. tracking) 
Kinematic  - Direction, speed, acceleration 
Type  - Vehicle (i.e. Tanks, trucks) 
Features   - Attributes (i.e. Wheeled, tracked) 
Allegiance   - (i.e. friend, foe, neutral) 

Figure 11. Raw tracks  Figure 12. Tracks with Road Networks. Figure 13. Tracks with Regions of Interest. 
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6. CONCLUSIONS 
 

This article overviewed some current fusion models and demonstrated the importance of the human in a fusion model.  The 
higher-level fusion issues of control, decision, and action need to be addressed in current fusion system designs to 
effectively include the human in prosecuting target localization and identification. For the development of a human-machine 
inter-active fusion model, the use of the human in a Level 5 process was further assed using situation awareness, trust, 
attention, and workload measures. Results show that designing for User Refinement, with respect to HIL attention, workload 
and trust in the automation, can enhance the accuracy of the target localization and group identity. 
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