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ABSTRACT   

For decades, there have been discussions on measures of merits (MOM) that include measures of effectiveness (MOE) 
and measures of performance (MOP) for system-level performance. As the amount of sensed and collected data becomes 
increasingly large, there is a need to look at the architectures, metrics, and processes that provide the best methods for 
decision support systems.  In this paper, we overview some information fusion methods in decision support and address 
the capability to measure the effects of the fusion products on user functions.  The current standard Information Fusion 
model is the Data Fusion Information Group (DFIG) model that specifically addresses the needs of the user in an 
information fusion system. Decision support implies that information methods augment user decision making as opposed 
to the machine making the decision and displaying it to user.  We develop a list of suggested measures of merits that 
facilitate decision support decision support Measures of Effectiveness (MOE) metrics of quality, information gain, 
and robustness, from the analysis based on the measures of performance (MOPs) of timeliness, accuracy, 
confidence, throughput, and cost. We demonstrate in an example with motion imagery to support the MOEs of quality 
(time/decision confidence plots), information gain (completeness of annotated imagery for situation awareness), and 
robustness through analysis of imagery over time and repeated looks for enhanced target identification confidence.   
 
Keywords: Information Fusion, Situational Assessment, MOVINT, Measures of Effectiveness, Decision Support, Data 
Fusion Information Group Model 

1. INTRODUCTION  

Decision Support requires protocols for human interaction, definition of the tasks, and understanding of the technology.  
Decision support systems (DSS) [1] include computer-based information systems that support business and 
organizational activities, control of assets, and presentation of situational entities that are similar to operating conditions 
of targets, sensors, and the environment respectively [2].  DSS enables decision making through interactive knowledge-
based algorithms based on the compilation of useful information from raw data, documents, personal interactions, and 
models.  Three components of DSS include models, databases, and user interfaces. Models could be user mental models, 
sensor and target models, and environmental models. With the advent of the information age and the World Wide Web, 
a host of resources can be used to aid users in decision making through databases, historical records, and political 
interactions.  The user interface provides the integrating component of knowledge-based systems with the operator 
which requires cognitive modeling, graphical interfaces, interactive and exploratory functions, and metrics of analysis.  

To motivate the MOE developments for DSS, we map user interface to information gain (usability/completeness), the 
database resources to quality (timeliness/confidence), and repeatability to robustness (tracking). In this paper, we are 
concerned with the decision support Measures of Effectiveness (MOE) metrics of quality, information gain, and 
robustness, from the analysis based on the measures of performance (MOPs) of timeliness, accuracy, confidence, 
throughput, and cost.  In [3], we postulated a general High Level Information Fusion (HLIF) MOE as: 

     Effectiveness = InfoGain * Quality * Robustness 

The information gain includes not only the fusion products (e.g. confidence in analysis), but also the completeness of 
information and the interface design for usability. Quality is based on the quality of service (e.g. timeliness) and 
information quality (e.g. data/source credibility). Robustness is over the context and number of use cases that can be 
captured. To determine the MOE, we aggregate the confidence and timeliness information for a MOE analysis in target 
discrimination using the C-OODA model. Section 2 overviews the elements of decision support systems. Sections 3 and 
4 discuss information fusion methods from the OODA (Observe, Orient, Decide, Act) models. Section 5 discusses 
metrics and Section 6 discusses an example of MOEs for decision making for wide-area motion imagery. 
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2. DECISION SUPPORT DEVELOPMENTS 

Power [4] defines different decision-support system (DSS) types: 
 

• A communication-driven DSS supports more than one person working on a shared task;  
• A data-driven DSS or data-oriented DSS emphasizes access to and manipulation of time series data; 
• A document-driven DSS manages, retrieves, and manipulates unstructured information in a variety of formats; 
• A knowledge-driven DSS provides specialized problem-solving expertise stored as facts, rules, or procedures; 
• A model-driven DSS emphasizes access to and manipulation of statistical, optimization, or simulation parameters 

to assist decision makers in analyzing a situation. 
 
Some additional types of DSS we include are: 

• A task-driven DSS focuses on specific tasks that are required (e.g. an image analyst annotating images); 
• A mission-driven DSS captures the overall situational picture for commanders and teams.    

 
The TRIAD model [5, 6, 7] identifies the interactions between the User (Human), Technology (Tool), and Function 
(Task) as shown in Figure 1. Designing the decision (or automated) support system tool enables task accomplishment 
such as observing, orienting, deciding, and acting. Human Factor specialists support the human-task analysis with a 
cognitive task analysis (CTA). A CTA identifies how the humans perceive the task, what strategies and resources are 
required to accomplish the task, and when are critical time constraints. Even with highly automated systems, the human 
has still a significant role to play in the execution of the task; however DSS methods can reduce the workload and time-
to-decision through proper decision aids [8] and displays [9]. For a mission-driven DSS, a cognitive work analysis 
(CWA) is needed to look at those emotional, cultural, and political factors that affect the user’s performance (e.g. 
scoring the image analyst on target assessment with or without complete contextual information).   
 

 
Figure 1. The Interaction between the Task, the Human and the Support or Automated Tool TRIAD.[5] 

3. INFORMATION FUSION DECISION SUPPORT MODELING 

 
3.1 DFIG Model 

The Data Fusion Information Group (DFIG) process 
model (that replaces the JDL model) with its revisions 
and developments is shown in Figure 2 [10]. 
Management functions are divided into sensor control, 
platform placement, and user selection to meet mission 
objectives. Level 2 (SA) includes tacit functions which 
are inferred from level 1 explicit representations of 
object assessment. Since the unobserved aspects of the 
SA cannot be processed by a computer, user knowledge 
and reasoning is necessary which requires a DSS and 
cognitive modeling.   

Figure 2. DFIG User-Fusion model [10]. 
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3.2 OODA 

One of the premier cognitive models for user decision-making is Boyd’s Observe, Orient, Decide Act (OODA) model, 
as shown in Figure 3. Figure 4 presents the cyclical nature of the OODA model in the context of the DFIG model.  

          
Figure 3. The extended OODA loop                                       Figure 4. The OODA model in relation to the DFIG model. 
                  (Fadok, Boyd & Warden, 1995). [11] 
 
The use of the OODA model has seen many developments and applications.  The developments include the extended 
OODA [12], team T-OODA [13, 14, 15], the modular M-OODA [16, 17], the cognitive C-OODA [18, 19], and the 
Technology, Emotion, Culture, and Knowledge TECK-OODA [20]. The applications of the OODA include information 
fusion, military systems [21], target recognition [22], and cultural modeling [20]. Recently, the use of Level 5 fusion has 
been modeled for semi-automated decision making [23]. Key to the developments and instantiations of the OODA 
models include: application relevant decision-making based on context, time of analysis, and uncertainty analysis.   

The OODA model is a cyclic process, evolving in the context of the analysis as shown in Figure 3.  The traditional 
information fusion data processing functions (i.e. estimation) include: observe and orient which compose situation 
awareness. Numerous efforts have sought to model the evidence accumulation in providing a situational analysis 
including: perception of situations [24], presentation of object assessments [25], descriptions of situations [26], 
architectures of situational awareness [27], and user assessment of situations [28].  In duality, the information fusion 
action functions (i.e. control) include decide and act as the decision making processes.  Examples of information fusion 
action analysis includes: decision making [29], user refinement [30], and sensor management [31].   

The OODA model and DFIG model have similar properties to understand the decision process. When the user must 
reason over an enormous amount of data, for a contextual situation, and utilize reasoning, this requires a cognitive 
analysis of the situation. Cognitive models include the developments from physiology [32] to high-level information 
fusion [33].  Likewise, the cognitive aspects of course of actions require an analysis of the timeliness to reach a decision 
that can be acted upon.  A comparison of the OODA model to the other information fusion models was analyzed in 
relation to the Omnibus model [34]. Table 1 compares the relevant information fusion decision making models from 
which we explore the cognitive (C-OODA) model as an extension to the Modular (M-OODA) model. 

Table 1:  Comparisons of Decision Making Models. 
 

Activity DFIG Model Omnibus Model OODA C-OODA 
Command Execution Level 6 Resource Tasking Act Action 

Implementation 
Decision Making Level 5 Control Decide Action Selection 

Select  Sensor Management Level 4 Decision Making 
Impact Assessment Level 3 Context Processing Orient Understand  
Situation Assessment Level 2 Pattern Processing  
Object Assessment Level 1 Feature Processing  
Signal/Info Processing Level 0 Signal Processing Observe Sense 
Data Acquisition/Registration Sensing Data Gathering 
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3.3 Modular OODA (M-OODA) 

The M-OODA incorporates explicit control and flow components more in line with the current understanding of military 
command and control (C2)  [16]. The M-OODA is based on a modular structure in which a module operates as a simple 
control system. A module is a task-goal directed activity formed of three core components. 
 
The M-OODA model modifies the OODA loop based on the following principles: 

1) It adopts a modular, or building blocks, approach in which each process of the OODA loop is represented as a 
generic module structured around three components: Process, State and Control; 

2) It incorporates explicit control elements within and across modules enabling a bi-directional data/information flow 
between modules. It also includes a feedback loop within each module; 

3) It provides a basic architecture for modeling a variety of team decision-making in the OODA loop. 
 
To utilize the OODA concept in a C2 system, elements of the modules include: Data gathering (Observe), situational 
understanding (Orient), action selection (Decide), and action implementation (Act). 
 
Table 2: Specifications of the core components of the M-OODA. [17] 
Module Process State Control 
Data Gathering Sense, encode, register, data 

translation, transduce, scan, fuse, 
detect, monitor 

World representation, scene 
organization, multimodal 
integration 

Vagueness, completeness, fuzziness, 
time available, quality of picture 

Situation 
Understanding 

Understand, identify, categorize, 
classify, organize, schematize  

Mental model, schema, episode, 
familiarity estimation 

Belief in interpretation, familiarity 
of schema, uncertainty on meaning 

Action 
Selection 

Select, choose, identify options, apply 
rules, consult, recognize, form 
hypothesis, simulate 

Decision, list of actions (course of 
actions), risk evaluation, expected 
gain, selection rules 

Risk assessment, completeness of 
options, cost assessment, gain 
estimation, familiarity of situation 

Action 
Implementation 

Act, planning, resource management, 
targeting, taking action 

Set of Actions, schedule,  
milestones, plan, mission, orders 

Feasibility, acceptability, resource 
availability 

 
3.4 Cognitive OODA (C-OODA) 

To support real-world decision making, a useful and accepted DSS tool must relate to standard systems (i.e. documents 
defining the armed forces doctrine on C2). Any C2 model has to keep explicit the high-level representation typical of the 
OODA loop. By formulating a detailed cognitively valid representation of the C2 decision cycle, the C-OODA 
(Cognitive-OODA) seeks to relate the user functions with their tools and tasks [17]. The C-OODA loop takes its roots in 
the classical version of the OODA loop and uses the modular architecture defined in the M-OODA loop proposed by 
Rousseau and Breton with key metrics of uncertainty and timeliness. 

       
Figure 5. C-OODA Control modeling [17].             Figure 6. C-OODA Control modeling in relation to other models. 
 
In order to show the functioning of the C-OODA loop, we define three different decision-making situations: Simple 
Match, Diagnosis and Evaluate Course of Action. 
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Simple Match: When the current situation is straightforward such that the crucial situation elements, the objectives, 

and the typical course of action to implement are easily recognized and identified. 
Diagnosis: To cope with the presence of situation uncertainty, a DM cognitively attempts to establish relationships 

between events and causal factors in order to define, explain, and control the situation.  
Evaluate Courses of Action: To augment data presentations, a mental simulation is required to evaluate potential 

difficulties, predict possible solutions and, consequently, to determine action implementations. Evaluation of 
COAs is called extended COA (ECOA) that require more elaborative processes which take time and resources.  

 
3.5 TEAM DECISION MAKING 

Within a given team, it is possible that different team 
members may work under more or less important time 
pressure; however the fusion of experts can work more 
productively through task specialization. An efficient team 
would be one that adequately allocates adequately the tasks 
among its team members based on their expertise, skills, and 
personality traits in order to reduce the workload, time 
pressure, and uncertainty factors. Breton et. al. [15] developed 
a taxonomy based on diversity of skills and time pressure 
which support C2 operations, as shown in Figure 7.  
 
• Autocratic: team leader, after obtaining all necessary 

information from the other team members, decides on a 
solution alone, without sharing the solution process.  

• Democratic: different people analyze, consult, and vote 
on the situation and the best alternative which reduces the effect of human errors and biases.  

• Deliberative: all team members share their thoughts and opinions on the situation in order to reach a consensus over 
the best solution as possible (e.g. jury). They may or may not be constrained by time. 

• Participative: all team members share the problem, are involved in the generation and evaluation of potential 
solutions and reach a mutual agreement on the chosen solution.  

 
These modes are similar to the User refinement behaviors of: neglect, consult, rely, and interact and over five basic 
functions of user refinement (1) Controlling, (2) Directing, (3) Coordinating, (4) Planning, and (5) Organizing [35]. 

4. INFORMATION FUSION DECISION SUPPORT 

One example of information fusion decision support is data management for MOVINT (intelligence about a moving 
object).  Typically object assessment algorithms track and identify the object to providing measures of performance 
(MOPs).  MOPs support the measures of effectiveness, which can vary over the sensor types, environmental conditions, 
targets of interest, situational context, and users [36]. One example of MOVINT is detecting cars moving in an urban 
area [37]. Detecting traffic can be completed by fixed ground cameras or on dynamic UAVs. If the sensors are on UAVs, 
path planning is needed to route the UAVs to observe the traffic [38, 39] or to provide cooperation among UAVs [40]. 
Also, MOVINT can come from ground sensors such as that featured in the DARPA Grand Challenge [41] to orient [42] 
or classify or identify other targets [43, 44].  

To facilitate target tracking and ID results [45] for decision support requires efforts in fusing imaging and non-imaging 
data [46, 47], understanding the user’s needs [48], the theoretical and knowledge models [49], and situational awareness 
processing techniques [50]. In a dynamic scenario, resource coordination [51] is needed for both context assessment, but 
also the ability to be aware of impending situational threats [52, 53]. For distributed sensing systems, to combine 
sensors, data, and user analysis requires pragmatic approaches to metrics [54, 55, 56].   

Information fusion has been interested in the problems of databases for target trafficability (i.e. terrain information) [57], 
sensor management [58], and processing algorithms [59] from which to assess objects in the environment. Various 
techniques have incorporated grouping object movements [60], road information [61, 62], and updating the object states 

 
Figure 7. The illustrations of four team DM types. 
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based on environmental constraints [63]. Detecting, classifying, identifying and tracking objects [64] has been important 
for a variety of sensors, including 2D visual, radar [65], and hyperspectral [66] data which support MOVINT. 

Work on DSS metrics includes tracking, sensor management, and target recognition MOP metrics [67]. Information 
theoretic measures [68] and tracking analysis [69] can support the sensor and data management as well as determine the 
Information Quality and Quality of Service needs. MOPs provide decision support for situational awareness for 
command and control. Various other sources of soft data (human reports) can be combined with the hard (physics-based 
sensing) [70] to update the sensor management, placement, and reporting of the situation based on the context and the 
needs of users. For target recognition, a confusion matrix can be transformed into a receiver operator curve (ROC) [71]. 

4.1 Decision Support with OODA modeling for target recognition 

Using Figure 8, the OODA loop models the object assessment system conducting automatic target recognition (ATR) 
which observes the sensor data and orients the information for the user. The user must decide if the ATR system is 
correct and act on the results.  To continue the loop, the user tasks the ATR sensor to collect data for fusion evaluation. 
The human can cue the fusion system by: observation (perception), orientation (situation context), decision 
(comparisons), and action (selection of alternatives). 

In Figure 8, (a) is the intersection of the ATR system and the user (where ATR is one of many fusion operations). The 
ATR ID confidence (1) must increase to enhance user trust, (2) represents the user tasking for more ATR data, and (3) 
shows that the OODA is iterated for efficiency (i.e. cycle time). We see that the human processes the observation and 
orientation information from fusion evaluation. The user looks at the fusion system outputs and determines the final 
decision of the target type and the action to be performed.  The user-fusion system performance is typically evaluated 
with a receiver operator curve (ROC) which assesses the probability of detection (PD) to various set of Probability of 
False alarms (PFA).  For the differing DM timing modes, we would be willing to operate on differing locations on the 
ROC curve.  Figure 8 (b) shows the time window modes associated with multiple DM modes for action.  For the reactive 
mode (e.g. autocratic), since the time window is immediate, the ATR PD decision can accept a large PFA. For the 
proactive mode (e.g. democratic), since anticipated threats are being assessed, it would be more important to lessen PFA. 
Finally for the preventative mode (e.g. deliberative and participative team DM), we must ensure that the intentions are 
well substantiated in order to act, which would require a very low PFA.    

  
 

Figure 8. (a) An ATR-Human OODA timing control Loops and (b) the ROC detection analysis. 
  
4.2 Test and Evaluation of Decision Support Systems 

Decision support requires testing and analysis in real and virtual 
simulations.  To provide a virtual test of a DSS, we need to capture the 
tasks over real world data. Through an evaluation analysis (Figure 9), 
we can implement, test, and demonstrate an improved exploitation 
workflow for exploitation systems, increase the use of machine 
automation to manage the production of intelligence from large 
volumes of persistent surveillance data, and perform forensic 
processing to support analysts and decision makers. With the advent of 
DSS technologies, there is a need to assess the capabilities (coverage 
analysis, robustness, and process flow) that enable effective usability 

 
Figure 9. Test Process emphasizing the need 

for validated data sets and evaluation. 
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of the fusion techniques.  For the transition process from science and technology (S & T) sensor design and algorithm 
exploration, there needs to be an appropriate test process in place to afford evaluation, shown in Figure 9.  The test 
process includes the available training data for empirical analysis, theoretical models for predictive capabilities, and real-
world demos to evaluate the robustness of the techniques. Demonstrations ground the DSS analysis and ensure that 
potential solutions are assessed and unanticipated challenges are discovered. The goal is to identify, measure, resolve, 
and minimize the extent to which data issues impact user functions through demonstration and experimentation studies.  
For example, DSS issues are present in (1) processing DSS technologies in a tactical environment that supports near-
real-time decision making and (2) automated forensic processing to exploit vast quantities of data with minimal human 
intervention.  For tactical decision making, the DSS issues surround providing the right data at the right time and with 
available ancillary information from which to make a decision. For strategic forensic processing, the timeline of 
information needs is more relaxed, putting more of the need of the DSS to explore multiple scenarios, mine for data that 
is relevant, and provide information updates that capture strategic options.   

4.3 Structured and Unstructured Data Management Metrics of Effectiveness 

Because effective DSS must incorporate diverse data structures it is important that a DSS address concerns of 
unstructured data in addition to structured data.  Unstructured data (versus) structured data refers to computerized 
information that does not have a data structure (i.e. exists within a database). Examples of “unstructured data” may 
include (1) textual: documents, presentations, spreadsheets, annotated images, etc., (2) imagery: multimedia files, 
streaming video, etc., (3) HUMINT: reports, audio files, gestures, (4) sensors: seismic, acoustic, magnetic, radar, sonar, 
etc., and (5) environmental: weather, GIS, etc. [72]. All of the data has to be collected, acquired, exploited, stored, 
recalled, and tagged, not to mention a host of other activities. Most of data that is collected has some structure; however, 
for information fusion the inherent structure is not common among entities. 

Processing of large volumes of data for DSS requires metrics, architectural models, and operational realistic scenarios to 
test data search, access, and dissemination [73]. Data exchange is an important area of information management that 
aims at understanding and developing foundations, methods, and algorithms for transferring data between differently 
structured information spaces to be used for diverse purposes over a networked environment [74]. Efficient and effective 
exchange of data must address many issues beyond just getting the data to where it is needed (transport) but also the 
ontologies [75] and protocols used.  Issues of dissemination (access, availability, and control), quality (truth, relevance, 
and accuracy), timeliness (speed-to-need and information lifecycle) are challenges that fall under the data exchange 
scope of activity. Many of these metrics translate directly to decision outcomes (timeliness, user confidence, and 
accuracy). From a large data perspective, the process of data exchange is complicated by limitations in interoperability, 
diversity in applications and contexts, and even by the structure of the data itself.  

A summary of ten key requirements that support measures of effectiveness include [76]: 
 

• Visibility: Illustration such as folders and plots 
• Control: Test, push, and pull of information 
• Auditing: Complete and searchable 
• Security: Data permissions and access 
• Performance: communication and traffic flow 

• Scale: amount of data 
• Ease of Installation: timeliness of submission  
• Ease of Use: distributed and timely access 
• Ease of Integration: interoperability 
• Cost of Ownership: money and effort 

 
These methods are similar to the QOS/IQ information fusion standard metrics such as timeliness, accuracy, 
confidence, throughput, and cost; with most of the efforts in DSS focusing on throughput and timeliness. It is hard to 
judge the quality of information stored; however, a user can input this information when the data is sent to be archived.  

Data maintenance is akin to equipment maintenance.  In the case that equipment maintenance includes reliability, 
survivability, reparability, supportability, and other “ilities”; the same case can be made for decision support systems.  

(1) Reliability is that the data is available, correct, and timely.  Much of the use of the data is based on the need for 
the data and information at the correct time. To ensure data reliability means that it has to be stored and 
accessed in such a way that it can be retrieved.   

(2) Survivability.  The data needs to be collected and correlated with the pedigree on the data collection and decision 
making processing.  To ensure that the data is available, it needs to “survive” in the database from which it is 
correctly called when needed, has the correct security labels, and is tagged in space, time, and events.   
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(3) Supportability: The data needs to have the associated contextual metadata information to be able to register, 
exploit, and fuse the data with other sources.  Such aspects of formats, protocols, models will enable usability 
and effectiveness of the data.    

We highlight one example from the above for reliability. 

5. CONFIDENCE VERSUS RELIABILITY 

To determine how to measure confidence for decision support, we need to look at formal definitions from STANAG 
2022. Typically, reliability refers to the continuous operation of equipment.  In most cases, the use of reliability for 
decision support refers to the equipment function; however for sensor management (or target classification), reliability 
can be confused with confidence as per the NATO Standardized Agreements [77, 78, 79]. 

 
STANAG 2022: Intelligence Reports 
STANAG 4171: Allied Reliability and Maintainability Publications 
STANAG 4158: Guidelines for Classifying Incidents for Reliability Estimation of Tracked and Wheeled Vehicles 
STANAG 4626: Modular and Open Avionics Architectures 

 
Credibility provides a soft definition of target identification which is closely related to reliability of which all the 
definitions are variations of “confidence” as shown below.  Note that the MIL-STD-6040 provides quantitative labels. 
 

RELIABILITY CODE EXPLANATION From STANAG 2022 
Completely Reliable A A tried and trusted source which can be depended upon with confidence 
Usually Reliable B A past successful source for which there is still some element of doubt in particular cases 
Fairly Reliable C A past occasionally used source upon which some degree of confidence can be based 
Not Usually Reliable D A source which has been used in the past but has proved more often than not unreliable 
Unreliable E A source which has been used in the past and has proved unworthy of any confidence 
Cannot be judged F It refers to a source which has not been used in the past 

 
CREDIBILITY CODE EXPLANATION From STANAG 2022 
Confirmed  1 If it can be stated with certainty that the reported information originates from another source 

than the already existing information on the same object 
Probably true 2 If the independence of the source cannot be guaranteed, but if, from the quantity and quality of 

previous reports, its likelihood is nevertheless regarded as sufficiently established 
Possibly true 3 If insufficient confirmation to establish any higher degree of likelihood, a freshly reported 

item of information does not conflict with the previously reported target behavior 
Doubtful 4 An item of information which tends to conflict with the previously reported or establish 

behavior pattern of an intelligence target 
Improbable 5 An item of information which positively contradicts previously reported information of 

conflicts with the established behavior pattern of an intelligence target in a marked degree 
Cannot be judged 6 If its truth cannot be judged 

 
RELIABILITY OF INFO Code Explanation from MIL-STD-6040 Value 

Highly/ Consistently reliable A Refers to information that can be depended upon with much confidence 0.95 
Very reliable B Refers to information upon which some degree of confidence can be placed 0.85 
Fairly reliable C Refers to information for which there is some element of doubt 0.75 
Cannot be judged F Refers to information that has not yet been evaluated for reliability 0.60 
Not Usually Reliable D Refers to information for which there is more doubt than confidence 0.40 
Unreliable E Refers to information that has proven to unworthy of confidence 0.10 

 
RELIABILITY OF Source Code Explanation from MIL-STD-6040 Value 
ROS 100% 100 A tried and trusted source which can be depended upon with confidence 1.00 
ROS 80% 80 A successful past source for which there is still some use-case element of doubt 0.80 
ROS 60% 60 A past source upon which some degree of confidence can be tested. 0.60 
ROS 40% 40 A past source has proved more often than not unreliable 0.40 
ROS 20% 20 A past source has proved unworthy of any confidence 0.20 
ROS 00% 0 A source which has not been used in the past 0.00 
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6. EXAMPLE OF DECISION SUPPORT FOR IMAGE ANALYST FUNCTIONS 

To facilitate research in MOVINT, the Columbus Large Image Format (CLIF) Data was collected by deploying a 
distributed set of sensors to monitor, track, and classify vehicles [80] which includes a list of challenge problems such as 
joint data management (JDM) for data-to-decisions (D2D) [81]. In this example, we use the results collected and 
analyzed over the CLIF data to analyze a DSS for an Image Analyst. 
 
6.1 User functions in a Decision Support System for MOVINT Targeting 

 
Figure 10. Observe and Orient Functions. 

 

 
Figure 11. Decide and Act Functions. 

 
The goal was to simulate the actions above for Decision Support.  
 
6.2 MOVINT Decision Support and Confidence-Timeliness Plots 

Visual analytics provide methods to visualize the data and analysis over MOVINT capabilities. MOVINT provides both 
tactical and operational intelligence (situational awareness) of the dynamic environment.  For the operational analysis, 
we can provide a track presentation of the objects. For the CLIF data set, the truth information is available with the data 
history.  Figure 12 presents displays of annotated targets in the image from different trackers including the Bounded 
Particle Resampling L1 (L1-BPR) tracker [82, 83] and other methods described in [84].  The right plot shows the case of 
target detection over the four trackers in which the user is getting the information for MOVINT decision support. 

To determine MOEs for DSS, we present the target confidence from classification fusion and accurate location 
information of the MOVINT results for Information Gain. Also, the information timeliness is an example of a Quality 
of Service attribute, while the imagery details the data quality. Finally, for robustness, we present different multiple 
tracker results process over a variety of operating conditions (OCs). Figure 12 shows the results, from which a user can 
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determine not only the location of the object, but the key aspects of the MOVINT target features for positive 
identification. The Decision Support Measure of Effectiveness is the combined results of InfoGain, Quality, and 
Robustness that we are currently displaying to the operator. 

 
Figure 12. (Left) Annotated feature analysis using different tracking results and (right) the Decision Support Timeliness-

Confidence Plot reporting from cumulated measurements in an OODA time analysis. 

7. CONCLUSIONS 

We have explored measures of effectiveness methods for Decision Support Systems (DSS) for information fusion 
focusing on MOVINT data-to-decision making.  We showed that the DSS MOE metrics aggregate MOPs of (target 
accuracy and false alarm reduction) for enhanced and timely decision making through the C-OODA model.  Improved 
exploitation workflow analysis needs to be evaluated within the context of the associated layered sensing assets, the 
exploitation tools, and the joint data management process.  Many DSS processes are developed in virtual environments 
with simulated data. With the algorithms developed, a virtual experiment will be conducted with real humans and 
simulated data. Finally, human analysts (i.e. commanders and users) should be included in field trials to demonstrate and 
quantify the impact of various automation techniques on intelligence production improvements from DSS technologies.   
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