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ABSTRACT 
 
The tracking goal is to reduce positional uncertainty. There are many ways to reduce tracking uncertainty: including 
classification data, using trafficability maps, and employing behavior information. We seek to extend tracking and 
identification modeling by incorporating intent to update prediction velocity vectors. A hybrid state space approach is 
formulated to deal with continuous-valued kinematics and discrete-valued target type, pose (inherently continuous but 
quantized), and intent behavior. The coupled tracker design is illustrated within the context of using ground moving target 
indicator (GMTI) and high range-resolution (HRRR) measurements as well as digital terrain elevation data (DTED), road 
map, and estimated goal states. The resulting Intent Coupled Tracking and Identification (ICTI) system is expected to 
outperform separately designed systems particularly during target maneuvers and recovering from temporary data dropout. 
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1.  INTRODUCTION 
The standard user fusion model incorporates many modeling constructs for analysis such as level 1 object tracking and 
identification, level 2 situation assessment, level 3 impact assessment, and level 5 user refinement, as shown in Figure 1. 
[5, 7]  An intersection of these 
different fusion processes is 
target intent. Intent is the 
purpose of meaning of action.  
For an object being tracked, the 
target behavior can convey intent 
information, such as a target 
moving rapidly might imply 
fleeing from a location. In order 
to design accurate trackers, we 
are interested in modeling the 
possible target intent so as to 
reduce the positional error.  As a 
preliminary investigation in 
intent tracking, we utilize a 
variable-state interacting  
multiple model (VS-IMM) 
tracker with kinematic, 
classification, in intent models 
for the Intent Coupled Tracking 
and Identification (ICTI) system. 
Other feature-aided tracking 
approaches include the wavelet [14], hypothesis and classification, [10] and vision [17].  Variants of the IMM [9] include 
the IMM-fuzzy [12], IMM-JBPDAF [6], and MS-IMM [23]. 
 
1.1. Intent 
Intent can be inferred from many situations, such as the target direction or speed. Using contextual information, terrain 
determines possible avenues of travel. Paths of travel can be determined from trafficability maps.[3, 16, 18]  Likewise, 
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Figure 1. Target tracking and Fusion Process terminology. 
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using a pursuit / evasion analysis, we can determine possible speeds of the target.  Figure 2 shows a detailed terrain map.  If 
the target was suspected to travel from its current location to a garrison (or goal state), it could be inferred as the desired 
path of travel. However, we can use the “no travel” areas to exclude possible routes and utilize road information as 
suspected paths, where each pixel location is replaced with intent-based direction map. The target movement prediction is 
updated based on the measured data and the estimated target trajectory and adjusted with the intent-base selector.  
 
Drummond [11] lists these characteristics of  a target: 
continuous  kinematic (e.g. velocity), continuous 
features, (e.g. signals), discrete attributes (e.g. 
identification),  and categorical (e.g. size).  Intent is a 
difficult thing to model because it is also difficult to 
quantify and measure.  However the user does desire to 
know not only the targets, but the suspected target 
intent.  Thus, we forge ahead with an idea for intent 
modeling.  Using the contextual information, we 
postulate these exogenous constraints : 
 

Roads  - available path of travel 
High Gradient Terrain –  unacceptable movement 
Intent Behavior – desired path of travel between 

current and goal position (e.g. garrison) 
 
If  ID information (to distinguish between targets of the same classification) was available, additional information of 
purpose and potential actions could be inferred (e.g. SCUD goes into stationary hide). 
 
1.2. Target Classification 
High range resolution radar (HRRR) attempts to extract a target range profile and to compare it with known target range 
profile templates for matching, thus achieving target type classification. Range profile is one-dimensional (1D) 
measurement of target radar reflectivity along the radar to target line-of-sight (LOS), thus being a function of the LOS 
angles. This look vector can also be expressed in terms of the aspect (or articulation) and depression angles in the target 
body frame, called a “pose,” as illustrated in Figure 3A. For practical reasons, a target is typically pre-sampled into a 
template library in its range profile at discrete poses. A successful template matching therefore identifies the target type and 
at the same time produces the pose at which the range profile is viewed. [8] Figure 3B shows a high resolution range 
profile. 
 

It has been recognized [4] that couplings between tracking and identification systems via pose, kinematic, and association 
constraints can be exploited to improve performance. However, most target tracking and classification systems are 
implemented independently. This has both theoretical and practical reasons. One practical limitation in the past was the 
lack of sensor accuracy/resolution and powerful computers for reliable implementation in real time. When target tracking 
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Figure 3. (A) Pose Angle Defined in Terms of Aspect (Articulation) Angles for (B) High Resolution Range Profile  

 
 

Figure 2.  Terrain features for target movement. 
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and identification are considered jointly, we deal with a hybrid space. That is, the target state vector and its measurements 
in target tracking systems are continuous-valued (real numbers) whereas the target type is discrete-valued and so is the 
target pose due to quantization. The relationships between a target state vector and its measurements are well understood 
analytically. However, it is difficult, if not impossible, to establish analytic models between a target type and its range 
profiles for all possible poses (except for two-dimensional look-up table interpolation from a template library). 
Furthermore, there are no adequate dynamic models (except probabilistic) relating the continuous kinematic state and the 
discrete pose and their respective measurements for a maneuvering target. 
 
One approach to solving the technical challenges while meeting the application needs is to explicitly exploit the couplings 
between tracking and identification systems as well as incorporate intent information. In this paper, we will utilize ground 
moving target indicator (GTMI) and HRRR measurements as well as digital terrain elevation data (DTED), road map, and 
goal states as a case study to examine couplings between the target tracking and target identification systems aided by 
intent information. 
 

2. COUPLINGS BETWEEN TARGET TRACKING AND IDENTIFICATION 
In [27], ten couplings of tracking and ID were postulated.  The ones that relate to intent are:  
 
A. Type for data association [4]. Target type data can be used to improve associating radar returns with correct tracks 
particularly when closely spaced or crossing targets are encountered. It is equally helpful when the target disappears and 
then reappears due to obscuration or after it slows down below the minimum detectable velocity (MDV) for a sharp turn. 
 
B. Type as kinematic constraints [4]. For a particular type of targets, its 
possible range of maneuvers (maximum speed, acceleration, turn rate, off-road 
capability, etc.) can be used to select the most appropriate set of models for the 
tracking filter and to reinforce this particular type of target models by increasing 
its contribution (probabilistic weighting) toward the final state estimate.  
 
E. Pose as a derived measurement [4]. For ground vehicles, their velocity 
vector is mostly aligned with the body longitudinal axis. As a result, the pose 
estimate can be used as a direction measurement of the target velocity vector. 
 
D. Pose as a filter model selector. If the above pose-derived acceleration 
estimate is difficult or not practical due to complexity or lack of accuracy, an 
alternative approach is to obtain from the sequence of pose changes a set of 
probabilistic weightings on the multiple models used by the tracking filter. As 
an example, Figure 4 shows a target classification for all possible aspects. A 
eastward movement yields higher confidence, with better pose estimates.  
 
F. Terrain/road-constrained kinematic updating [20]. The width of a road when read from a digital map can be used as 
position constraints for updating and prediction. For an on-road vehicle, the curvature of a road ahead provides an early 
indication of turn maneuver and its turning radius, which can be used to increase the likelihood of the turn model of the 
tracking filter.  
 
H. Kinematics and terrain/road data for narrowing search space. A vehicle attitude and its rate of change can be 
determined from its velocity vector and the local terrain gradient. In addition, for ground vehicles, their heading (velocity 
vector) is mostly aligned with the body centerline (no sideslip angle). As a result, an accurate estimate of the velocity 
vector (i.e., body longitudinal direction) and its estimation error covariance can be converted into a pose estimate and its 
confidence interval. Together, they can be used as the reduced search space for pose estimation and type identification. 
 
I. Kinematics to assist target identification. The kinematic estimates for each target type under consideration can be used 
to differentiate one from another. This can be done at least in two ways. One is to fuse the probability of each type being 
true as derived by the tracking filter with the statistical measure of each type based upon matching between the current 
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Figure 4. Vehicle separation plot 
for all aspect angle classifications.
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range profile measurement and all type templates. The other way is to exclude certain types of targets based upon the 
observed dynamic behavior and trajectory pattern, which they are incapable of by design. 
 
J. Call for better imaging sensors. The GMTI tracking filter may issue request additional resources such as a video 
sensor [2, 17, 19] for better target identification or more accurate pose estimation to help HRRR at critical moments. It is 
important to know the limits of each sensor and know when to make the call, such as for airborne targets. [1, 13, 15] 
 
Target type and kinematic state may be considered jointly for group tracking and for determining other tactical information 
such as who come from where (source) and head toward where (sink) using which route (line of communication). Among 
the list of possible couplings between the target tracking and target identification systems described above, we concentrate 
below on the filtering aspect in greater details.  
 

3. FEATURE-AIDED TRACKING 
In this section, we utilize the trafficability information (roads, terrain, and goal states) as intent selections of pose estimates, 
as shown in Figure 5. The performance will vary as a function of the pose estimate selection intent estimates under 
different operating conditions such as at stop, in steady motion, and making turns. 

 
3.1 Method E: Pose as a derived measurement 
In the early work [4], the pose estimate corresponding to the maximum range profile matching for a given target type is 
used as a derived measurement to the associated tracking Kalman filter. By the assumption that the ground vehicle velocity 
vector is mostly aligned with its body principal axis, this pose estimate when transformed to the body frame or a common 
reference frame provides a measurement of the vehicle heading or the direction of the velocity vector. 
 
When the range profile template has a very fine resolution, that the template matching finds the right pose, and that the 
sideslip angle is small, this pose estimate can provide an accurate and fast updating of the Kalman state. This is because a 
pose estimate bears more information than a range or range rate. The latter as a scalar is the projection of the velocity 
vector onto the LOS vector, thus less informative than the vector direction itself. However, when the above conditions do 
not hold, the pose estimate may be poor or even erroneous. If still used as a direct measurement, it would adversely affect 
the tracking performance. Other methods can be used instead. 
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Figure 5. Coupled Target Tracking and Identification with Intent modeling 
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3.2 Method H: Pose-modeled intent from Terrain/Road data 
This approach attempts to estimate target pose from terrain data. To implement this approach, the target direction is 
estimated from available traffic patterns (which can be computed a priori) and intent (which can be based on the target 
identity). The observed pose from a target identification system such as 1D HRR matching is artificially made discrete due 
to angular quantization and since the recognition/matching process is not perfect, the pose value may be erroneous. Thus, 
we seek alternative methods to update pose. We actually encounter a problem of estimating the underlying maneuver from 
a sequence of discrete-time discrete-valued pose observations (a point process). The underlying maneuver is estimated 
from the sojourn time in each pose and the transition from one pose to another, rather than the individual poses. As a result, 
the pose accuracy is less an issue (a limiting factor) in this formulation than Method E described above. 
 
The hybrid estimation theory based on continuous-time stochastic differential equations [21] may be applied to this 
problem. However, since no closed-form solution is available for the continuous-time filter, its implementation would 
require real-time integration of differential equations (high-order integration schemes with variable integration steps may 
be required to ensure good numerical behavior). In contrast, a discrete-time formulation may be easier from an 
implementation point of view. The discrete-time mode filters for point processes have been derived [24,26] and applied to 
maneuvering target tracking with an imaging sensor [25], or trafficability maps, which can be used to model the pose 
measurement of HRRR and its dynamics. 
 
Due to the inherent randomness, measurement noise, and quantization errors, the pose dynamics is suitably characterized 
by a probabilistic transition matrix, with the transition probability from one pose to another as the inverse sojourn time in 
the pose proportional to the underlying maneuver. The sequence of pose measurements is modeled with a confusion matrix. 
The resulting mode filter [24, 26] provides an estimate of the unknown intent as well as its estimation error covariance. In 
this way, not only the orientation-derived intent, but also its estimation error covariance can be incorporated into a second-
order extended Kalman filter (EKF) to ensure performance robustness [25].  
 
3.3 Method D: Pose-aided target model selection 
The interacting multiple model (IMM) estimator [9] is popularly used to describe the target kinematics with different 
maneuvers. The IMM algorithm delivers its final estimate and covariance as the weighted sums of all model filter estimates 
and their respective covariance matrices. The weights used in the summation are the probability for the corresponding 
model being true.  In most implementations, however, the IMM algorithm determines its model weights solely based on the 
residuals of its measurements under the general Gaussian noise assumption. As such, it does not use any external “support” 
information except for the a priori probability for each model as being true at the very beginning.  
 
With HRRR available, each time the target identification system processes a range profile measurement, the mode filter 
will produce the type and pose estimates as well as their probabilities as being true. By consequence, in addition to using 
this pose estimate as an extra measurement to the tracking filter (Method E) or deriving an intent estimate from it (Method 
H), we may simply generate a probabilistic support for a particular kinematic model in the tracking filter. 
 
The pose-derived model weights can then be combined or fused with the kinematic-based and intent-based model 
probabilities using either the point-process filtering or by a Bayesian inference method or with a belief classification 
filter.[27] This external supported IMM algorithm, though being not as fast as Method E in responding to a maneuver, is 
definitely simpler and may be more robust in cases where pose estimates are poor. 
 

4. KINEMATICS/TERRAIN-AIDED TARGET ID/POSE ESTIMATION 
Target kinematics and terrain/road data can be used to improve target identification and pose estimation. Two techniques 
attempt to reduce the type and pose search space over which the range profile templates will be searched for matching. 
 
One technique to aid target ID is to reduce the set of possible types for a target under surveillance based on the kinematic 
estimate and observed trajectory pattern in comparison to the design capability of each type, the terrain conditions, and the 
tactical environment [4]. This may exclude certain types from being further considered in the tracking filter. 
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A more applicable technique is to obtain a reliable interval for possible target poses prior to the search in range profile for a 
given target type [4]. The target position and velocity estimates and their standard deviations can be used for this purpose. 
When DTED data is available, a vehicle’s attitude can be estimated from the gradient at its location given the heading (i.e., 
along the velocity vector). If the vehicle is on road, the road direction can be used as a first estimate of its heading. 
However, the accuracy of such an attitude estimate depends on the digital terrain grid resolution and its accuracy, the 
position and velocity errors, and a possible sideslip angle. 
 
In addition to aiding target pose estimation, the DTED and road map can also be used to improve kinematic state estimation 
[6, 20]. With the vehicle velocity known, the change rate in attitude is determined by the terrain gradient. Similarly, the 
curvature of a road can be used to predict the imminent turn maneuver as well as turning radius given the speed. The local 
slope of the terrain is likely to influence the vehicle acceleration, e.g., slow down going uphill while speed-up downhill. 
These quantities can be incorporated into target tracking algorithms as extra measurements and/or model weighting factors. 
Moreover, the road width can also be used as constraints to delimit the position estimate and its prediction for better road 
following. Finally, if goal states are known, such as refueling locations, intent information can be used with terrain 
information to establish movement directions (or a speed-pose velocity vector). 
 
Many databases of range profile templates and techniques of detection and identification have been developed and reported 
in the literature. [4, 8] To improve their target identification in terms of search speed and successful rate of classification, a 
third technique is to fuse the probability for each type being true derived from the tracking filter’s kinematics with the 
statistical measure of each type based upon matching between the current range profile measurement and all types in the 
template library. This is the complementary operation of Method D as described above. [27] 
 

5. HYBRID MODELING FOR FILTER DESIGN 
In this section, we first describe the modeling of kinematic state in a realistic setting with available terrain, road, and goal-
state information. We then present the modeling of discrete-valued pose dynamics, measurement process, and estimation. 
 
5.1 Kinematic State Modeling 
The kinematic state (i.e., position, velocity, and/or acceleration) of a target when viewed by a tracking radar with ranging 
measurements (i.e., range, range rate, elevation and azimuth) is continuous-valued (or real-valued). The dynamic behavior 
of a ground vehicle (wheeled or tracked) is completely described by the set of six-degree-of-freedom (6DOF) equations 
[27] and its radar observations by a three-dimensional (3D) body reflectivity function. In principle, it is possible to use a 
6DOF model to construct a target tracking filter with its attitude variables representing the 3D model for shape or 
reflectivity recognition.. With 1D HRRR, however, it suffices to use a simplified 6DOF model to describe a ground target 
motion and a reduced set of variables as the continuous-valued part of the tracking filter design. 
 
5.2 Modeling Discrete-Valued Pose Dynamics and Measurement Process 
A HRRR provides 1D range profiles of a target (i.e., the target radar reflectivity along the radar to target LOS direction). 
Since each target’s template library only contains its range profiles sampled at discrete poses (i.e., the aspect and 
depression angles in the target body frame), template matching therefore provides a quantized pose reading, which thus 
becomes discrete-valued. Given a range profile measurement, its correlation with the entire template library typically does 
not provide a single decisive matching at a discrete pose for a particular type but rather a distribution of correlation values 
over a range of possible poses for different target types. This is due in part to cross-correlation between range profiles at 
adjacent poses (or some features extracted from the range profiles), thus defining the angular resolution of pose estimation 
as well as the inherent discernibility (or lack of discernibility) for a target type and between target types.  
 
Models of the pose measurement process and their associated estimation filters are presented below. Due to quantization, 
the underlying pose of a target in a particular type, denoted by p(t), takes a value from a discrete set: 
 
 p(t) ∈ P = {p1, p2,…, p M} (1) 
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Introduce an indicator vector ρ(t) for the discrete variable p(t) such that the ith element of ρ(t) is: 
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5. 3 Modeling As Discrete-Time Point Process 
In the first model, a decision is made by picking up the type and pose corresponding to the set of largest correlation peak 
matches. The output of this measurement process is denoted by ni(t) = 1 when a pose estimate of p(t) = p1 is declared for i 
= 1, …, M. The HRRR matching outcome is thus mapped into an indicator vector n(t) = [n1(t), n2(t),…, nM(t)]’. 
 
The process of range profile measurement, matching, and classification is not perfect. The HRRR matching outcome ni(t) is 
not always equal to ρi(t) and this discrepancy can be characterized by the discernibility matrix Dk = [ k

ijd ] as: 

}1)(,1)(|1)({ ==== tttnPd kij
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ij φρ      with     1
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M

j
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ijd  (3) 

 
where φk(t) is the kth element of φ(t), which is the underlying dynamics state vector of the discrete-valued pose. This is also 
the arrival rate of nj(t) at time t when ρi(t) = 1 for a given maneuver φk(t) = 1 (when n k(t) is viewed as a point process). 
 
After the radar platform’s motion is compensated for from the HRRR measurements, the changes of pose over time reflect 
the target dynamics. For a ground vehicle target, it is reasonable to describe the pose transition under maneuver  (direction 
of travel) based on intent in a probabilistic setting.  
 
Assume that any maneuver will take one of N possible behavior intent vectors b(t) ∈ B = {b1, b2,…,bN} or equivalently b(t) 
= Bφ(t) with φ(t) being the indicator vector of b(t), similarly defined as in Eq. (2). Since the maneuvering strategy is almost 
unknown, the direction change in intent may be modeled as a homogenous Markov chain, specified by its transition 
probability matrix φΠ = [ φπ ij ] as: 

 πφ
ij = P{b (t + 1) = bj | b(t) = bi} = P{φj(t + 1) = 1 | φi(t) = 1 }    with    1

1
=∑

=

N

j
ij
φπ  (4) 

where the transition matrix is developed form the trafficability map (roads, terrain, and intent paths). 
 
Under a particular maneuver, the pose dynamics is also assumed to be a Markov process and described by the matrix of 
transition probabilities ρ

kΠ =[ ρπ kij ] with: 
  
 πρ

kij = P{p(t + 1) = pj | p(t) = pi, b(t) = bk} = P{ρj(t + 1) = 1 | ρi(t) = 1, φk(t + 1) = 1} 
  

  with                1
1

=∑
=

M

j
kij
ρπ , k=1,2,…,N (5) 

where each transition probability can be chosen to match the mean transition time from one pose to another under the 
maneuver.  For a given context, we have modeled both the pose change from ID as well as from the intent. 
 
This model indicates that the dynamics state φ(t) is related to the range profile matching outcome n(t)  via the pose variable 
ρ(t). As a result, φ(t) and ρ(t) are two “hidden” processes and their combination affects the range profile measurements 
over time. Define the composite state of φ(t) and ρ(t) as: 
 
 ξ(t) = [φ1(t)ρ1(t), …, φ1(t)ρM(t), ..., φN(t)ρ1(t),  ..., φN(t) ρM(t)]T = φ(t) ⊗ ρ(t) (6) 
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where is the Kronecker product. The original processes can be reconstructed from ξ(t) as: 
 
 φ(t) =[IN×N ⊗ 1M

 T] ξ(t)   and   ρ(t) =[1N T  ⊗  IM×M] ξ(t)    (7) 
 
where IN×N stands for an N by N identity matrix and 1N indicates an N-vector with all ones, respectively. 
 It is easy to verify that ξ(t) is also a Markov process with the transition probability matrix ][ ξξ π mnΠ =  calculated 

from φΠ and ρ
kΠ as: 

 φρξ ππρφρφξξπ lkkijiljkmnmn ttttPttP ====+=+===+= }1)(,1)(|1)1(,1)1({}1)(|1)1({  (8) 
 

where the indices of (i, j) of ρ(t) and (l, k) of φ(t) define m and n in ξ(t), respectively. 
 
A matrix form of the arrival rate for n(t) as related to the composite state variable ξ(t) can now be written for the HRRR 
measurement process as: 
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The estimate of the composite state ξ(t) in the mean square sense given the current and past pose measurements denoted by 
Nt = {n(s), s ≤ t } is written as: 
 

 }|)({)|(ˆ tNtEtt ξξ =  (9) 
 

which as the conditional expectation affords a natural interpretation that its ith component is the a posteriori probability of 
ξk(t)=1 (i.e., the ith state is true) given Nt.  
 
With the above models, the mode filter [24-26] for discrete-time point process can be applied to estimate the composite 
state and its estimation error covariance matrix. The mode filter consists of measurement updating and prediction 
equations: 
 
 )(~)]1|(ˆ[)1|(ˆ)|(ˆ tnttΓtttt −+−= ξξξ ξ  (10a) 

 )|(ˆ)'()|1(ˆ ttΠtt ξξ ξ=+  (10b) 
  
where the innovation process and the filter gain are given respectively as: 
 

 )1|(ˆ)()(~ −−= ttΛtntn ξ  (10c) 

 1}')'1|(ˆ)1|(ˆ)]1|(ˆ[{'})'1|(ˆ)1|(ˆ)]1|(ˆ[{)]1|(ˆ[ −−−−−−−−−=− ΛttttΛttΛdiagΛttttttdiagttΓ ξξξξξξξξ  (10d) 

with the initial condition being )}0({)0|0(ˆ ξξ E= . 
 
 5. 4 Bayesian Modeling 
Instead of making a “hard” decision as to which pose and type for each range profile measurement, the second model 
generates a vector of likelihood functions for all possible poses and types according to the correlation between the range 
profile measurement and all items in the template library. The correlation values can be normalized to indicate their 
respective “likelihood” to be true given the measurement. Those values that are below a certain threshold can be excluded 
from further consideration, thus reducing the problem dimensionality. Alternatively, a Gaussian density function can be 
assigned to each correlation when the noise terms in all range bins are assumed to be independent. Since correlation is a 
linear operation, the resulting noise in the correlation is Gaussian distributed according to the central limit theorem. 
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A range profile measurement at time t is denoted by z(t). Its correlation with the reference range profile sampled at pose 
p(t) = pi in the template library is denoted by ci(t). The resulting likelihood function for pose i under dynamic state k is 
denoted by gk[ci(t)] for i = 1, …, M and k = 1, …, N. Put the individual likelihood functions into a vector form: 
 
 L[z(t)] = [g1[c1(t)],…, g1[cM(t)],…, gN[c1(t)] ,…, gN[cM(t)]] T (11) 
 
Define the composite state estimate as the conditional expectation (i.e., the a posteriori probability) as in Eq. (9). Then 
applying the Bayes’ formula, a recursive algorithm to calculate the composite state estimate is obtained with  
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being the measurement updating equation; 
 
 )1|1(ˆ)'()1|(ˆ −−=− ttΠtt ξξ ξ  (13) 
 
being the one step ahead prediction equation, and 0

ˆ)0|0(ˆ ξξ = being the initial condition. The estimates of φ(t) and ρ(t) and 

their respective covariance matrices can be recovered from the composite state estimate )|(ˆ ttξ and cov[ )|(ˆ ttξ ], which can 
be used in turn in the tracking filter via Method D. 
 

6. RESULTS 
 

The simulation consisted of a terrian map and goal states from which trafficability was assed. The resulting trafficability 
information was transfromed to an intent map for the likely direction that a target would move.  The behavior-movement 
vector was then incoporated as a selection criteria for the VS-IMM kinematic and classification model weighting. The 
model was used in conjuctntion with the constant velocity and constant acceleration white noise kinematic models and a 
Markov intent process model to weight the estimated pose in the prediction process.  Figure 6 shows the case where the 
target moves around the mountain to get to the goal state.  The intent was used to facilaite the accurate tracking of the 
target as it proceeds from the eastward direction to the northern diretcion after a sharp turn.  (note Figure 6B is an inversion 
of Figure 6A due to the plotting capabilities).  
 

 
 

Figure 6.  Intent-based target tracking and Identification results. 



E. Blasch, “Modeling Intent for a target tracking and identification Scenario,” Proc. SPIE, Vol. 5428, April 2004. 

 

 
 

6. SUMMARY 
 
In this paper, we developed a method to incorporate intent into a tracking and target identification system to improve 
performance. We outlined techniques for making use of target pose information to aid target tracking and also techniques 
to use target kinematics, DTED, road map, and intent information to aid target pose estimation. A hybrid state space 
modeling was presented to characterize the continuous-valued kinematics and discrete-valued target type, pose (inherently 
continuous but quantized), and intent behavior. 
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